The XSBench Mini-App - A Discussion of Theory

John Tramm
jtramm@mcs.anl.gov

June 24, 2013

Abstract

A kernel has been developed that mimics the most computationally
expensive steps of a robust nuclear reactor core Monte Carlo particle
transport algorithm — the calculation of macroscopic cross sections. This
document explains the theoretical basis of the kernel and outlines the
current topics of research the kernel facilitates.

1 Introduction

1.1 The Reactor Simulation Problem

The computerized simulation of nuclear reactors is a well established field, with
origins dating back to the early years of digital computing. Traditional reactor
simulation techniques aim to solve the diffusion equation for a given material
geometry and starting (source term) neutron distribution within the reactor.
This is done in a deterministic fashion using well developed numerical methods.
However, deterministic methods suffer from a number of problems; namely, a
significant number of approximations and simplifications must be made which
results in non-trivial margins of error when compared to real-world results.

An alternative method, Monte Carlo (MC) simulation, simulates the path
of a particle (neutron) as it travels through the reactor core. As many particle
histories are simulated, a picture of the full distribution of neutrons within the
reactor core is developed. Furthermore, the methodologies utilized by MC sim-
ulation require very few assumptions, resulting in incredibly accurate results.
The downside to this method, however, is that a huge number of neutron histo-
ries must be run in order to achieve an acceptably low variance in the results.
Specifically, the correlation between runtime and variance is governed by the
central limit theorem, which states that the variance of the sample mean is
inversely proportional to the number of particle histories realized, i.e., :

1
2 J—
oo



1.2 OpenMC

OpenMC is a Monte Carlo particle transport simulation code focused on neu-
tron criticality calculations. It is capable of simulating 3D models based on
constructive solid geometry with second-order surfaces. The particle interac-
tion data is based on ACE format cross sections, also used in the MCNP and
Serpent Monte Carlo codes.

OpenMC was originally developed by members of the Computational Reac-
tor Physics Group at the Massachusetts Institute of Technology starting in 2011.
Various universities, laboratories, and other organizations (including CESAR)
now contribute to the development of OpenMC.

1.3 XSBench

The XSBench proxy app models the most computationally intensive part of
a typical MC transport algorithm - the calculation of macroscopic neutron
cross sections - a kernel which accounts for around 85% of the total runtime
of OpenMC. The essential computational conditions and tasks of fully featured
MC neutron transport codes are retained in the mini-app, without the addi-
tional complexity of the full application. This provides a much simpler and
more transparent platform for determining performance benefits resulting from
a given hardware feature or software optimization.

XSBench is under ongoing development by members of the Center for the
Exascale Simulation of Advanced Reactors (CESAR) group at Argonne National
Laboratory. Development began in 2012.

2 Algorithm
2.1 Reactor Model

When carrying out reactor core analysis, the geometry and material properties
of a postulated nuclear reactor must be specified in order to define the variables
and scope of the simulation model. For the purposes of XSBench, we use a
well known community reactor benchmark known as the Hoogenboom-Martin
model [1]. This model is a simplified analog to a more complete, “real-world”
reactor problem, and provides a standardized basis for discussions on perfor-
mance within the reactor simulation community. XSBench recreates the com-
putational conditions present when fully featured MC neutron transport codes
(such as OpenMC) simulate the Hoogenboom-Martin reactor model, preserving
a similar data structure, a similar level of randomness of access, and a similar
distribution of flops and memory loads.

2.2 Neutron Cross Sections

The purpose of an MC particle transport reactor simulation is to gain useful
data about the distribution and generation rates of neutrons within a nuclear



reactor. In order to achieve this goal, a large number of neutron lifetimes are
simulated by tracking the path and interactions of a neutron through the reactor
from its birth in a fission event to its escape or absorption, the latter possibly
resulting in another fission event.

Each neutron in the simulation is described by three primary factors: its
spatial location within a reactor’s geometry, its speed, and its direction. At
each stage of the transport calculation, a determination must be made as to
what the particle will do next. For example, some possible outcomes include
uninterrupted continuation of free flight, collision with another atom, or fission
with a fissile material. The determination of which event occurs is based on a
random sampling of a statistical distribution that is determined by empirical
material data stored in main memory. This data, called neutron cross section
data, represents the probability that a neutron of a particular speed (energy) will
undergo some particular interaction when it is inside a given type of material.
To account for neutrons across a wide energy spectrum and materials of many
different types, the structure that holds this cross section data must be very
large. In the case of the simplified Hoogenboom-Martin benchmark roughly 5.6
GB! of data is required.

2.3 Data Structure

A nuclide is a type of atom described by a specific number of neutrons and
protons. A given element can have many different nuclides, such as Uranium-
235 or Uranium-238. A material in the reactor model is composed of a mixture
of nuclides. For instance, the “reactor fuel” material might consist of several
hundred different nuclides, while the “pressure vessel side wall” material might
only contain a dozen or so. In total, there are 12 different materials and 355
different nuclides present in the modeled reactor.

For each nuclide, an array of nuclide grid points are stored as data in main
memory. Each nuclide grid point has an energy level, as well as five various
cross sections (corresponding to five different particle interaction types) for that
energy level. The arrays are ordered from lowest to highest energy levels. Each
nuclide has a different “grid spacing,” i.e., the number, distribution, and granu-
larity of energy levels varies between nuclides. One nuclide may have hundreds
of thousands of grid points clustered around lower energy levels, while another
nuclide may only have a few hundred grid points distributed across the full
energy spectrum. This obviates straightforward approaches to uniformly orga-
nizing and accessing the data.

In order to increase efficiency of access, the algorithm utilizes another data
structure, called the unionized energy grid, as described by Leppénen [2] and
Romano [3]. The unionized grid facilitates fast lookups of cross section data
from the nuclide grids. This structure is an array of grid points, consisting of
an energy level and a set of pointers to the closest corresponding energy level
on each of the different nuclide grids.

1We estimate that for a robust depletion calculation in excess of 100 GB of cross section
data would be required.



Table 1: XSBench Data Structure Summary

Nuclides Tracked 355
Total # of Energy Gridpoints 4,012,565
Cross Section Interaction Types 5
Total Size of Cross Section Data Structures | 5.6 GB

2.4 Access Patterns

In a full MC neutron transport application, the data structure is accessed each
time a macroscopic cross section needs to be calculated. This happens any-
time a particle changes energy (via a collision) or crosses a material boundary
within the reactor. These macroscopic cross section calculations are extremely
common in the MC transport algorithm, and the inputs to them are effectively
random. For the sake of simplicity, XSBench was written ignoring the parti-
cle tracking aspect of the MC neutron transport algorithm and instead isolates
the macroscopic cross section lookup kernel. This provides a large reduction in
program complexity while retaining similarly random input conditions for the
macroscopic cross section lookups via the use of a random number generator.

In XSBench, each macroscopic cross section lookup consists of two randomly
sampled inputs: the neutron energy and the material. Given these two inputs, a
binary (log n) search is done on the unionized energy grid for the given energy.
Once the correct entry is found on the unionized energy grid, the material
input is used to perform lookups from the nuclide grids present in the material.
Use of the unionized energy grid means that binary searches do not need to
be performed on each individual nuclide grid. For each nuclide present in the
material, the two bounding nuclide grid points are found using the pointers from
the unionized energy grid and interpolated to give the exact microscopic cross
section at that point.

All calculated microscopic cross sections are then accumulated (weighted by
their atomic density in the given material), which results in the macroscopic
cross section for the material. The calculation of macroscopic cross sections is
depicted in Algorithm 1.

Algorithm 1 Macroscopic Cross Section Lookup

1: R(my, Ep) > randomly sample inputs
2: Locate E,, on Unionized Grid > binary search
3: for n € m, do > for each nuclide in input material
4 0q +— 1, B, > lookup bounding micro xs’s
5: op < n, B, +1

6 O 4 0q,0p > interpolate
7 Y+—X+py,-0 > accumulate macro xs
8: end for




In theory, one could “pre-compute” all macroscopic cross sections on the
unionized energy grid for each material. This would allow the algorithm to
run much faster, requiring far fewer memory loads and far fewer floating point
operations per macroscopic cross section lookup. However, this would assume
a static distribution of nuclides within a material. In practice, MC transport
algorithms will need to track the burn-up of fuels, as well as heterogeneous tem-
perature distributions within the reactor itself. This means that concentrations
are dynamic, rather than static, therefore necessitating the use of the more
versatile data model deployed in XSBench.

We have verified that XSBench faithfully mimics the data access patterns
of the full MC application under a broad range of conditions. The runtime
of full-scale MC transport applications, such as OpenMC, is 85% composed of
macroscopic cross section look ups. Within this process, XSBench is virtually
indistinguishable, as the same type and size of data structure is used, with
a similarly random access pattern and a similar number of floating point op-
erations occurring between memory loads. Thus, performance analyses done
with XSBench will provide results applicable to the full MC neutron transport
algorithm, while being easier to interpret.

3 Early Results

We have successfully run XSBench on a wide variety of shared-memory archi-
tectures. Below is a list of systems XSBench has been deployed on:

1. IBM BlueGene/Q Mira - 16 cores
2. Intel Xeon E5620 - 8 cores

3. Intel i7-3615QM - 4 cores

4. Intel i7-2600k - 4 cores

Strong scaling results vary significantly between systems. However, generally
speaking, we have seen approximately 76% scaling on the Intel systems, and
approximately 95% scaling on BlueGene/Q, where scaling is defined as the ratio
of realized performance using all cores on the node to the performance of a single
core multiplied by the number of cores on the node, i.e.:

Scaling = P xn
1

Where P, is the performance on all n cores, and P; is the performance on a
single core.



4 Topics of Investigation

4.1 Problem Statement

We are looking to shed light on why, precisely, we are losing performance as cores
are added to a node. We know that we are not memory bandwidth constricted,
however, we suspect that we are generally limited by memory latency/contention
issues. We want to know which exact subsystems are responsible for this. For
instance, what is it about the architectures of BG/Q vs intel Sandy Bridge that
result in such drastic differences in scaling? Why is BG/Q at 96% efficiency at
1 thread per core, whereas the intel chip is at 76% efficiency at 1 thread per
core? We really want to know exactly where these losses are coming from, so
that we can make an intelligent prediction as to how this type of code will scale
when there are hundreds of cores per node. Furthermore, we want to know if
there are any changes we can make, either algorithmically or in terms of data
structures, that could potentially get around the current hardware bottlenecks.
We would be perfectly happy with 76% or 96% scaling if that was as bad
as things would ever get in the future. However, given the shape of the scal-
ing curves (downwards), we want to be certain about what exactly is causing
degradation in the first place, and whether or not these causes will result in
continually diminishing returns as we add cores to a node in future systems.

4.2 Avenues of Research

We have experimented already in several areas. We have added dummy flops
in between memory loads, and found that this tends to improve scaling. We
think this effect can be explained by the extra flops masking the latency to main
memory. This helps to isolate memory latency as a probably bottleneck.

We have also experimented with making each of the memory loads much
larger, in terms of number of bytes per load. This did not have any signifi-
cant effect on scaling. We believe that this demonstrates that the algorithm
is not (currently) memory bandwidth dependent, because the extra bandwidth
required to transmit the larger memory loads should immediately cause scaling
degradation if there is not enough available bandwidth. Since there was no
degradation, there must be extra bandwidth still available.

Additionally, we have experimented with hardware threads and CPU vector
directives (such as intel SSE or IBM QPX) as possible avenues for improve-
ment. We found that hardware threads are beneficial to the performance of the
algorithm - even more so than most other types of HPC codes. We are close to
getting results from the vector directives approach.

We have also been attempting to construct a compelling narrative from the
data that explains what exact hardware subsystems currently bottleneck the
code and result in the scaling degradation observed. We have used PAPI to
generate performance counter data, but have so far been unable to coax the
data into any coherent form capable of shedding light on our situation. I.e., raw
counter data isn’t of much use unless we have a way to make sense out of it.



5 Future Work

There are additional capabilities that do not yet exist in full-scale MC neutron
transport algorithms, such as on-the-fly doppler broadening to account for the
material temperature dependence of cross sections, that we plan on adding to
XSBench for experimentation with various hardware architectures and features.
Furthermore, we want to investigate cross section data compression techniques,
specifically by reducing the data into resonance regions, in the hopes of quanti-
fying the trade offs (in terms of decreased DRAM memory footprint/traffic vs.
the increase in CPU flop requirements) of such compression techniques.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract DE- AC02-
06CH11357. The submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory (Argonne) under Contract
DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display pub-
licly, by or on behalf of the Government.

References

[1] J.E. Hoogenboom, W.R. Martin, B. Petrovic, “The Monte Carlo perfor-
mance benchmark test aims, specifications and first results,” International
Conference on Mathematics and Computational Methods Applied to Nu-
clear Science and Engineering, Rio de Janeiro, Brazil (2011).

[2] Jaakko Leppénen, “Two practical methods for unionized energy grid con-
struction in continuous-energy Monte Carlo neutron transport calculation,”
Annals of Nuclear Energy, Volume 36, Issue 7, July 2009, Pages 878-885.

3] Paul K. Romano, Benoit Forget, “The OpenMC Monte Carlo particle trans-
g
port code,” Annals of Nuclear Energy, Volume 51, January 2013, Pages
274-281.

[4] Paul K. Romano, Benoit Forget, Forrest Brown, “Towards Scalable Par-
allelism in Monte Carlo Particle Transport Codes Using Remote Memory
Access,” Progress in Nuclear Science and Technology, Volume 2, October
2011, Pages 670-675.

[6] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, R. Biswas, The im-
pact of hyper-threading on processor resource utilization in production ap-
plications, 18th International Conference on High Performance Computing
(HiPC), Bangalore, India, Dec. 2011.



(6]

Andrew Siegel, Kord Smith, Paul Romano, Ben Forget, Kyle Felker, “Multi-
core performance studies of a Monte Carlo neutron transport code,” In-
ternational Journal of High Performance Computing Applications. (Under
Review)

John Tramm, Andrew Siegel, “Memory Bottlenecks and Memory Contention
in Multi-Core Monte Carlo Transport Codes,” Joint International Confer-
ence on Supercomputing in Nuclear Applications and Monte Carlo, 2013.
(Submitted, Pending Acceptance & Review. Not yet Published.)



