
The Minion Manual

Minion Version 0.15RC1

Christopher Jefferson Lars Kotthoff Neil Moore
Peter Nightingale Karen E. Petrie Andrea Rendl

December 6, 2012

Contents

1 Introduction to Minion 5
1.1 What are constraints? . 5
1.2 Solving constraint problems . 6
1.3 Minion . 8

1.3.1 Installing Minion . 8
1.3.2 Installation instructions for Windows 8
1.3.3 Installation instructions for Mac 8
1.3.4 Installation instructions for Linux-x86 or x64 8
1.3.5 Compilation instructions . 8
1.3.6 Trying out the executable . 9
1.3.7 The debug variant . 10
1.3.8 Minion online help . 10
1.3.9 Basic Minion use . 10
1.3.10 Stopping and resuming . 11

2 Minion Internals 12
2.1 Variable Types . 12
2.2 Choosing Between Minion’s Constraints 13
2.3 Compile-time options . 14

2.3.1 Required and optional components 15
2.3.2 Selective compilation of constraints 15

3 Minion in Practice 17
3.1 Minion Example File . 17
3.2 The Farmers Problem . 21
3.3 Cryptarithmetic . 22
3.4 The Eight Number Puzzle . 23
3.5 A K4 × P2 Graceful Graph . 28
3.6 The Zebra Puzzle . 31
3.7 N-Queens . 37

A All the Minion programming constructs 40
A.1 constraints . 41
A.2 constraints abs . 41

1

CONTENTS 2

A.3 constraints alldiff . 41
A.4 constraints difference . 42
A.5 constraints diseq . 42
A.6 constraints div . 43
A.7 constraints div_undefzero . 43
A.8 constraints element . 43
A.9 constraints element_one . 45
A.10 constraints eq . 45
A.11 constraints gacalldiff . 46
A.12 constraints gacschema . 46
A.13 constraints gcc . 46
A.14 constraints gccweak . 47
A.15 constraints haggisgac . 48
A.16 constraints haggisgac-stable . 49
A.17 constraints hamming . 49
A.18 constraints ineq . 49
A.19 constraints lexleq . 50
A.20 constraints lexleq[rv] . 50
A.21 constraints lexless . 51
A.22 constraints lighttable . 51
A.23 constraints litsumgeq . 51
A.24 constraints max . 52
A.25 constraints min . 52
A.26 constraints minuseq . 52
A.27 constraints modulo . 53
A.28 constraints mod_undefzero . 53
A.29 constraints negativetable . 54
A.30 constraints occurrence . 54
A.31 constraints occurrencegeq . 55
A.32 constraints occurrenceleq . 55
A.33 constraints pow . 55
A.34 constraints product . 56
A.35 constraints reification . 56
A.36 constraints reify . 56
A.37 constraints reifyimply . 57
A.38 constraints shortstr2 . 57
A.39 constraints sumgeq . 57
A.40 constraints sumleq . 58
A.41 constraints table . 58
A.42 constraints watched-and . 59
A.43 constraints watched-or . 59
A.44 constraints watchelement . 60
A.45 constraints watchelement_one . 60
A.46 constraints watchelement_undefzero 60
A.47 constraints watchless . 61
A.48 constraints watchsumgeq . 61

CONTENTS 3

A.49 constraints watchsumleq . 62
A.50 constraints watchvecneq . 62
A.51 constraints weightedsumgeq . 62
A.52 constraints weightedsumleq . 63
A.53 constraints w-inrange . 63
A.54 constraints w-inset . 63
A.55 constraints w-literal . 63
A.56 constraints w-notinrange . 64
A.57 constraints w-notinset . 64
A.58 constraints w-notliteral . 64
A.59 constraSysInts shortstr2 . 64
A.60 input . 65
A.61 input constraints . 65
A.62 input example . 66
A.63 input search . 68
A.64 input shorttuplelist . 69
A.65 input tuplelist . 70
A.66 input variables . 71
A.67 switches . 71
A.68 switches -check . 72
A.69 switches -cpulimit . 72
A.70 switches -dumptree . 72
A.71 switches -findallsols . 72
A.72 switches -fullprop . 72
A.73 switches -makeresume . 73
A.74 switches -nocheck . 73
A.75 switches -nodelimit . 73
A.76 switches -noprintsols . 73
A.77 switches -noresume . 73
A.78 switches -outputCompressed . 73
A.79 switches -preprocess . 74
A.80 switches -printonlyoptimal . 75
A.81 switches -printsols . 75
A.82 switches -printsolsonly . 75
A.83 switches -quiet . 75
A.84 switches -randomiseorder . 75
A.85 switches -randomseed . 75
A.86 switches -redump . 75
A.87 switches -searchlimit . 76
A.88 switches -sollimit . 76
A.89 switches -solsout . 76
A.90 switches -split . 76
A.91 switches -tableout . 77
A.92 switches -timelimit . 77
A.93 switches -varorder . 78
A.94 switches -verbose . 78

CONTENTS 4

A.95 switches -X-prop-node . 78
A.96 variables . 79
A.97 variables 01 . 79
A.98 variables alias . 80
A.99 variables bounds . 80
A.100variables constants . 80
A.101variables discrete . 81
A.102variables sparsebounds . 81
A.103variables vectors . 81

Chapter 1

Introduction to Minion

Minion is a solver for constraint satisfaction problems. First we introduce constraints,
then give a general overview of Minion. Following this we give instructions for instal-
lation and basic use.

1.1 What are constraints?
Constraints are a powerful and natural means of knowledge representation and infer-
ence in many areas of industry and academia. Consider, for example, the production of
a university timetable. This problem’s constraints include: the maths lecture theatre has
a capacity of 100 students; art history lectures require a venue with a slide projector; no
student can attend two lectures simultaneously. Constraint solving of a combinatorial
problem proceeds in two phases. First, the problem is modelled as a set of decision
variables, and a set of constraints on those variables that a solution must satisfy. A
decision variable represents a choice that must be made in order to solve the problem.
The domain of potential values associated with each decision variable corresponds to
the options for that choice. In our example one might have two decision variables per
lecture, representing the time and the venue. For each class of students, the time vari-
ables of the lectures they attend may have an AllDifferent constraint on them to ensure
that the class is not timetabled to be in two places at once. The second phase consists
of using a constraint solver to search for solutions: assignments of values to decision
variables satisfying all constraints. The simplicity and generality of this approach is
fundamental to the successful application of constraint solving to a wide variety of
disciplines such as scheduling, industrial design and combinatorial mathematics [11].

To illustrate, figure 1.1 shows a simple puzzle, where two six-digit numbers (DON-
ALD and GERALD) are added together to form another six-digit number (ROBERT).
Each letter A, B, D, E, G, L, N, O, R and T represents a distinct digit 0 . . . 9. The puzzle
can be represented with the expressions below, given by Bessière and Régin [2].

100000× D + 10000× O + 1000× N + 100× A + 10× L + D

5

CHAPTER 1. INTRODUCTION TO MINION 6

D O N A L D

+ G E R A L D

= R O B E R T

Figure 1.1: Alphametic problem

+100000× G + 10000× E + 1000× R + 100× A + 10× L + D
= 100000× R + 10000× O + 1000× B + 100× E + 10× R + T

and allDifferent(A, B, D, E, G, L, N, O, R, T)

This representation of the puzzle illustrates the main concepts of constraint pro-
gramming. A, B, D, E, G, L, N, O, R and T are variables, each with initial domain
0 . . . 9. There are two constraints, one representing the sum and the other represent-
ing that the variables each take a different value. A solution is a function mapping
each variable to a value in its initial domain, such that all constraints are satisfied. The
solution to this puzzle is A=4, B=3, D=5, E=9, G=1, L=8, N=6, O=2, R=7, T=0.

Constraints are declarative — the statement of the problem and the algorithms used
to solve it are separated. This is an attractive feature of constraints, since it can reduce
the human effort required to solve a problem. Various general purpose and specialized
algorithms exist for solving systems of constraints. A great variety of problems can be
expressed with constraints. The following list of subject areas was taken from CSPLib
[5]:

• Scheduling (e.g. job shop scheduling [7]),

• Design, configuration and diagnosis (e.g. template design [8]),

• Bin packing and partitioning (e.g. social golfer problem [4]),

• Frequency assignment (e.g. the Golomb ruler problem [9]),

• Combinatorial mathematics (e.g. balanced incomplete block design [3]),

• Games and puzzles (e.g. maximum density still life [10]),

• Bioinformatics (e.g. discovering protein shapes [6]).

1.2 Solving constraint problems
The classical constraint satisfaction problem (CSP) has a finite set of variables, each
with a finite domain, and a set of constraints over those variables. A solution to an
instance of CSP is an assignment to each variable, such that all constraints are simulta-
neously satisfied — that is, they are all true under the assignment. Solvers typically find
one or all solutions, or prove there are no solutions. The decision problem (‘does there

CHAPTER 1. INTRODUCTION TO MINION 7

Search Simplify

Pre-process

CSP specification

Solution

Heuristic

Queue
of constraints
to propagate

Propagate
allDifferent
constraint

Propagate
numerical
constraint

Propagate
logical

constraint

Propagate
arbitrary

constraint

......

Simplify

Variable
domains

Add
constraints
to queue

Figure 1.2: Overview of a constraint solver

exist a solution?’) is NP-complete [1], therefore there is no known polynomial-time
procedure to find a solution.

The most common technique (and the one used by Minion) is to interleave splitting
(also called branching) and propagation. Splitting is the basic operation of search,
and propagation simplifies the CSP instance. Apt views the solution process as the
repeated transformation of the CSP until a solution state is reached [1]. In this view,
both splitting and propagation are transformations, where propagation simplifies the
CSP by removing values which cannot take part in any solution. A splitting operation
transforms a CSP instance into two or more simpler CSP instances, and by recursive
application of splitting any CSP can be solved.

Since splitting is an exponential-time solution method, it is important that splitting
is minimized by effective propagation. Much effort has gone into developing propa-
gation algorithms which are fast and effective in removing values. Most propagation
algorithms are specialized to particular types of constraint (e.g. a vector of variables
take distinct values in any solution, the AllDifferent constraint). They typically run in
polynomial time.

Figure 1.2 is a simple representation of how many constraint solvers (including
Minion) work. The search element is typically depth-first chronological backtracking
by default, although a solver will often allow different search algorithms to be pro-
grammed. When searching, a variable and value must be selected. This can be done
statically or with a dynamic heuristic. The simplify component contains a queue of
constraints which need to be propagated. When a constraint is propagated, and re-
moves values from the variable domains, the domain events cause other constraints to
be added to the queue. Propagation of constraints on the queue is iterated until the
queue is empty.

CHAPTER 1. INTRODUCTION TO MINION 8

1.3 Minion
Minion accepts a file describing an instance of CSP, and solves it as described above.
From the user’s point of view, the most important features are the set of constraints
Minion can reason with, and the types of variables which are supported. These are
described later in this document. This section deals with installing Minion and getting
started with it.

1.3.1 Installing Minion
The main Minion website is http://minion.sourceforge.net/, and this con-
tains links to the download page. Currently, executables with and without debug infor-
mation are provided for Mac, Linux, and Windows1.

1.3.2 Installation instructions for Windows
Download the Windows archive minion-x.y.z-windows.tar.gz and unpack,
you should find Minion executable minion.exe. The executable should work from
the Windows command shell cmd.exe. Minion requires the Microsoft Visual C++
2008 Redistributable Package2 to work. Please note that the package for Visual C++
2010 will not work.

Alternatively, you can get the archive minion-x.y.z-cygwin.tar.gzwhich
also contains some additional required DLL files.

1.3.3 Installation instructions for Mac
Download the Mac archive minion-x.y.z-mac.tar.gz and unpack. The con-
tents include universal binary minion which should work on both Intel and PowerPC
Macs with Mac OS X 10.4.2 or later.

1.3.4 Installation instructions for Linux-x86 or x64
Download the Linux archive minion-x.y.z-linux.tar.gz and unpack. It con-
tains the binary minion. The executable is linked statically.

All versions come with a debug variant as well. The debug executables are con-
tained in the minion-x.y.z-debug-<os>.tar.gz.

1.3.5 Compilation instructions
If there is no executable which works on your computer, you can use the source package
(named minion-x.y.z-source.tar.gz).

1The Windows binaries currently do not support compressed input files.
2The Microsoft Visual C++ Redistributable Package can be downloaded from

http://www.microsoft.com/downloads/details.aspx?FamilyID=
a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en.

CHAPTER 1. INTRODUCTION TO MINION 9

Minion uses the CMake3 build system to check for the required and optional com-
ponents. Without any additional flags, the standard binary will be built. The earliest
version of CMake the build was tested with is 2.4.7.

Note that you need at least g++ version 3.4.2 to compile Minion. Furthermore
boost4 is required to build Minion. Any version between 1.33 and 1.42.0 inclusive
should work. If you have installed boost in a non-standard location or CMake does not
find it for some other reason, you can try setting the environment variable BOOST_ROOT
to your boost installation directory for CMake 2.6, or Boost_INCLUDE_DIR to the
location of the boost header files for CMake 2.4.

To compile, create a new directory for the build, and issue the following commands
on Unix:

cmake <path/to/minion>
make minion

where <path/to/minion> is the path to the Minion distribution (the directory
which contains CMakeLists.txt).

On Windows, use CMake to generate Visual Studio project files. You can then open
the project file in Visual Studio and compile it. The build was tested with Visual Studio
9 2008.

If you have at least 2GB of RAM and a dual-core processor, you may prefer to use

make minion -j2

instead. As a rule of thumb, you should have 1GB of RAM for every compile process.
To build minion-debug, run

cmake -DDEBUG=1 <path/to/minion>

instead of

cmake <path/to/minion>

CMake caches the configuration between runs. If you built the debug binary first and
then want to build the non-debug version, you have to explicitly disable that option, i.e.
run

cmake -DDEBUG=0 <path/to/minion>

More details on compile-time options can be found in section 2.3.

1.3.6 Trying out the executable
On all platforms, Minion needs to be run from a command shell so that the output can
be seen. If you go to the Minion directory in a shell and run the executable, it should
output version information and a help message.

3http://www.cmake.org
4http://www.boost.org/

CHAPTER 1. INTRODUCTION TO MINION 10

1.3.7 The debug variant
One would normally use the non-debug variant of minion, which runs at full speed.
However, if some unexpected behaviour is observed, running the debug variant may be
helpful. It contains a large number of assertions and other checks, and may bring to
light a problem with the input or an internal bug.

The CMake constants you should set to 1 to get a binary suitable for debugging are
DEBUG and INFO.

1.3.8 Minion online help
To see the root page of the help system, run Minion with help as the only argument.
The help system is hierarchical, with the following top-level categories: constraints,
input, switches and variables, with contents as follows:

constraints This category contains a description of every constraint which is al-
lowed in the input CSP.

input Information about the input file format.

switches Information about command-line switches.

variables A description of each type of CSP variable supported in Minion.

To access the help for the alldiff constraint, for example, the command would be
minion help constraints alldiff. The full documentation provided by
the Minion executable is reproduced in the Appendix of this manual.

1.3.9 Basic Minion use
As a simple example of Minion input, we modelled the alphametic puzzle in figure 1.1.
The Minion input file shown below consists of two sections: the variables, in which
the 10 CSP variables are declared along with their initial domains; and the constraints.
The allDifferent constraint in the example above is mapped into gacalldiff here. The
numerical constraint is translated into two constraints as follows: x+ y = z is mapped
to x + y − z ≤ 0 and x + y − z ≥ 0 and these two are represented using weighted-
sumleq and weightedsumgeq respectively. The coefficients are specified first, with the
coefficients of ROBERT negated, followed by the list of variables.

MINION 3

VARIABLES

DISCRETE a {0..9}
DISCRETE b {0..9}
DISCRETE d {0..9}
DISCRETE e {0..9}
DISCRETE g {0..9}

CHAPTER 1. INTRODUCTION TO MINION 11

DISCRETE l {0..9}
DISCRETE n {0..9}
DISCRETE o {0..9}
DISCRETE r {0..9}
DISCRETE t {0..9}

CONSTRAINTS

gacalldiff([a,b,d,e,g,l,n,o,r,t])

weightedsumleq([100000,10000,1000,100,10,1,
100000,10000,1000,100,10,1,
-100000,-10000,-1000,-100,-10,-1],
[d,o,n,a,l,d,g,e,r,a,l,d,r,o,b,e,r,t],0)

weightedsumgeq([100000,10000,1000,100,10,1,
100000,10000,1000,100,10,1,
-100000,-10000,-1000,-100,-10,-1],
[d,o,n,a,l,d,g,e,r,a,l,d,r,o,b,e,r,t],0)

EOF

This example is in the Minion distribution, in directory benchmarks/small. Exe-
cuting minion benchmarks/small/donaldgeraldrobert.minion gives
the solution A = 4, B = 3, D = 5, E = 9, G = 1, L = 8, N = 6, O = 2, R = 7, T =
0.

1.3.10 Stopping and resuming
Minion provides several flags that allow to stop the solver before the problem has been
solved to completion (see Appendix A). Furthermore Minion can of course be inter-
rupted manually while it is running, for example by pressing Control-C.

Minion can output a new input file that enables resuming the search from where it
was stopped. The new file contains the original problem specification and additional
constraints to rule out the search that has been done already. To resume, simply run
Minion on this new file without any special flags.

To enable this behaviour and have Minion create a resume file on termination, run
it with the flag -makeresume.

Chapter 2

Minion Internals

This chapter explains several details about Minion’s internals, which are useful to know
when trying to get the most from Minion.

2.1 Variable Types
Minion’s input language is purposefully designed to map exactly to Minion’s internals.
Unlike most other constraint solvers, Minion does not internally add extra variables and
decompose large complex constraints into small parts. This provides complete control
over how problems are implemented inside Minion, but also requires understanding
how Minion works to get the best results.

For those who, quite reasonably, do not wish to get involved in such details, ’Tailor’
abstracts away from these details, and also internally implements a number of optimi-
sations.

One of the most immediately confusing features of Minion are the variable types.
Rather than try to provide a "one-size-fits-all" variable implementation, Minion pro-
vides four different ones; BOOL, DISCRETE, BOUND and SPARSEBOUND. First we
shall provide a brief discussion of both what these variables are, and a brief discussion
of how they are implemented currently.

BOOL Variables with domain {0, 1}. Uses special optimised data structure.

DISCRETE Variables whose domain is a range of integers. Memory usage and the
worst-case performance of most operations is O(domain size). Allows any subset
of the domain to be represented.

BOUND Variable whose domain is a range of integers. Memory usage and the worst-
case performance of all operations is O(1). During search, the domain can only
be reduced by changing one of the bounds.

SPARSEBOUND Variable whose domain is an arbitrary range of integers. Otherwise
identical to BOUND.

12

CHAPTER 2. MINION INTERNALS 13

It appears one obvious variable implementation, SPARSEDISCRETE, is missing.
This did exist in some very early versions of Minion but due to bugs and lack of use
was removed.

Some of the differences between the variable types only effect performance, whereas
some others can effect search size. We provide these here.

1. In any problem, changing a BOOL variable to a DISCRETE, BOUND or SPARSEBOUND
variable with domain {0, 1} should not change the size of the resulting search.
BOOL should always be fastest, followed by DISCRETE, BOUND and SPARSEBOUND.

2. A BOUND variable will in general produce a search with more nodes per second,
but more nodes overall, than a DISCRETE variable.

3. Using SPARSEBOUND or BOUND variables with a unary constraint imposing the
sparse domain should produce identical searches, except the SPARSEBOUND
will be faster if the domain is sparse.

As a basic rule of thumb, Always use BOOL for Boolean domains, DISCRETE for
domains of size up to around 100, and the BOUND. With DISCRETE domains, use the
w-inset constraint to limit the domain. When to use SPARSEBOUND over BOUND
is harder, but usually the choice is clear, as either the domain will be a range, or a set
like {1, 10, 100, 100}.

2.2 Choosing Between Minion’s Constraints
Minion has many constraints which at first glance appear to do almost identical things.
These each have trade-offs, some of which are difficult to guess in advance. This
section will provide some basic guidance.

One of the major design decisions of Minion’s input language is that it provides
in the input language exactly what it provides internally. Unlike most other constraint
solvers, Minion does not break up constraints into smaller pieces, introduce new vari-
ables or simplify or manipulate constraints. This provides complete control over how
Minion represents your problem, but also leads to a number of annoyances.

Probably the first thing you will notice it that Minion has neither a “sum equals”
or “weighted sum equals” constraint. This is because the most efficiently we could
implement such a constraint was simply by gluing together the sumleq and the sumgeq
constraints. Minion could provide a wrapper which generated the two constraints in-
ternally, but this would go against the transparency. Of course if in the future a more
efficient implementation of sumeq was found, it may be added.

The watchsumgeq and watchsumleq are varients on the algorithm used to
implement SAT constraints. They are faster than sumleq and sumgeq, but only work
when summing a list of Booleans to a constant. Further watchsumgeq performs best
when the value being summed to is small, and watchsumleq works best when the
value being summed to is close to the size of the input vector.

Minion does not attempt to simplify constraints, so constraints such as sumgeq([a,a,a],
3) are not simplified to sumgeq([a],1). This kind of simplification, done by hand,

CHAPTER 2. MINION INTERNALS 14

will often improve models. Further, and importantly in practice, Minion pre-allocates
memory based on the initial domain size of variables. If these are excessively slack,
this can hurt performance throughout search.

Some constraints in Minion do not work on BOUND and SPARSEBOUND variables,
in particular gacalldiff and watchelement. These two constraints are in gen-
eral better when they can be used.

2.3 Compile-time options
There are a number of flags which can be given to Minion at compile time to affect
the resulting executable. These flags are prone to regular changes. By searching the
Minion source code, you may find others. These undocumented ones are prone to
breakage without warning.

The following flags are considered "blessed", and are fully tested (although in fu-
ture versions they may be removed or altered). Adding any of these flags will probably
slow the resulting Minion executable.

All of these flags have to be passed to cmake with the -D switch; for example

cmake -DNAME=MyMinion <path/to/minion>

Again, keep in mind that cmake caches its configuration – if you run it again without
specifying NAME, it will assume the name you have given before and not the default.

NAME=name Overrides Minion’s default and names the executable name.

DEBUG=1 Turns on a large number of internal consistency checks in minion. This
executable is much slower than normal minion, but vital when trying to debug
problems.

SLOW_DEBUG=1 Turns on even more internal checking; the resulting executable will
be much slower than standard Minion.

PRINT=1 (Only meaningful with DEBUG=1) Turns on more printing of information.

QUICK=1 For optimisation reasons, Minion usually compiles many copies of every
constraint. This flag makes Minion compile each constraint only once. This
drastically reduces the time to compile and the size of the executable, but the
resulting executable is slower. This should never effect the results Minion pro-
duces.

INFO=1 Makes minion output a large, but poorly documented, set of information
about how search is progressing. This flag is useful for debugging but should not
be used for trying to following search (use the command line flag -dumptree
instead). This option is likely to be replaced with a more useful dump of search
in a future version of Minion.

UNOPTIMISED=1 Turn off all compiler optimisation, so Minion can be usefully
checked in gdb.

CHAPTER 2. MINION INTERNALS 15

PROFILE=1 Set compiler optimisation flags that allow Minion to be better profiled.
Implies UNOPTIMISED=1.

GPROF=1 (Only meaningful with PROFILE=1) Set compiler flags to profile the bi-
nary with gprof.

REENTER=1 Compile Minion so it is reentrant (more than one problem can exist in
memory at a time). At present reentrance is not used for anything, and will only
slightly slow Minion.

THREADSAFE=1 Compile thread-safe Minion. Does not have any effect right now.

SMALL=1 Build a small binary by passing -Os to the compiler.

WDEG=1 Enable weighted degree variable heuristic. This may or may not speed up
Minion.

WTRIG=1 Enable a weighted queue of triggers which will process the cheapest trigger
first. This only affects triggers of the same type. This may or may not speed up
Minion.

BACK_VEC=1 Keep backtrack memory in a vector instead of a continuous block of
memory.

CACHE_MALLOC=1 (Only meaningful with BACK_VEC=1) Enable caching malloc.

DISTCC=1 Use distcc (if found). Experimental.

Furthermore the environment variable $CPU is taken into account when running
cmake. The contents of this variable are passed on to the compiler without any pro-
cessing; usually one would want to use it as a means of specifying machine-specific
compiler flags, such as producing code for a specific CPU.

2.3.1 Required and optional components
Boost is required to build Minion (at least version 1.33). Bzip2 and Zlib are optional, if
they are not present, you will not be able to read compressed input files. If a Common
Lisp binary (clisp) is found, you will be able to build the LISP generators. If you
have a doxygen executable, you will be able to generate the API documentation.
If you have a pdflatex executable and a UNIX-like system, you will be able to
generate the PDF documentation.

2.3.2 Selective compilation of constraints
The most time-consuming part of the Minion compilation process is the compilation
of all the constraints. If not all constraints are required, the user may specify the con-
straints to be compiled into the binary in two ways.

When running cmake one can give it the -DCONSTRAINTS="<list>" flag to
specify the semicolon-separated list of constraints to be compiled, e.g.

CHAPTER 2. MINION INTERNALS 16

cmake -DCONSTRAINTS="sumleq;sumgeq" <path/to/minion>

Alternatively, one can specify the name of a Minion input file or a file containing a
list of constraints with the -DCONSTRAINTS_FILE=<file> option, e.g.

cmake -DCONSTRAINTS_FILE=input.minion <path/to/minion>

Note that this does not work with compressed input files.

Chapter 3

Minion in Practice

The previous chapter clearly outlined what the constructs of a Minion file are, including
what the variable types are and which type of constraint should be used when. This
chapter takes a more practical role, outlined within are 7 minion example files which
are clearly commented so that the user can see what a minion file looks like in practice.
Comments in minion start with a], however for reasons of ease of reading all lines of
actual code be it Minion or Essence’ are shown in typewriter text and comments are
inserted in normal text. The first file is a modified version of the one that all the minion
developers turn to when modelling a new problem in minion. It shows exactly what
a minion file can include and what the syntax is for all the possible sections. If you
are modelling a problem as minion than we recommend you take a copy of this file
and edit it appropriately, as this will help to guide you through the modelling process.
The rest of this chapter contains versions of the minion input examples introduced in
the Tailor chapter of this manual. These are all produced automatically by tailor from
the Essence’ specification given in that chapter. We hope the comments will clarify
exactly what these files mean. These examples can be used as the bases to implement
any similar problems. The Minion overview is completed in the last chapter where a
full list of all the constraints is given, including a brief overview of how each operates.

3.1 Minion Example File
This file does not really relate to any English problem description, although it does
parse and run, it is an example which clearly shows all of the possible Minion input
file constructs. If you are modelling a problem as minion than we recommend you take
a copy of this file and edit it appropriately, as this will help to guide you through the
modelling process. It can be found in the

summer_school

directory and is called

format_example.minion

17

CHAPTER 3. MINION IN PRACTICE 18

we have added comments to explain the different sections to the novice user.

MINION 3

This file includes an example of all the different inputs you can give to Minion. It
is a very good place to start from when modelling problem in the Minion specification.

The first section is where all the variables are declared.

VARIABLES

There are 4 type of variables. Booleans don’t need a domain and are formatted as
follows:

BOOL bo

Internally, Bound variables are stored only as a lower and upper bound whereas
discrete variables allow any sub-domain. Bound variables need a domain given as a
range as follows:

BOUND b {1..3}

Discrete variables also need a domain given as a range as follows:

DISCRETE d {1..3}

Sparse bound variables take a sorted list of values as follows:

SPARSEBOUND s {1,3,6,7}

We can also declare matrices of variables. The first example is a matrix with 3
variables: q[0],q[1] and q[2].

DISCRETE q[3] {0..5}

The second example is of a 2d matrix, where the variables are bm[0,0], bm[0,1],
bm[1,0], bm[1,1].

BOOL bm[2,2]

The third example shows how to declare a matrix with more indices. You can have
as many indices as you like!

BOOL bn[2,2,2,2]

In this next section, which is optional, you can define tuplelists. Tuplelists provide a
method of defining sets of tuples which can then be used in table and negativetable
constraints. Defining these in a **TUPLELIST** does not change the search, but can
save memory by reusing the same list of tuples in multiple constraints.The input is:
〈name〉 〈num_of_tuples〉 〈tuple_length〉 〈numbers. . .〉.

CHAPTER 3. MINION IN PRACTICE 19

TUPLELIST
Fred 3 3
0 2 3
2 0 3
3 1 3

The next thing to declare are the constraints which go in this section.

CONSTRAINTS

Constraints are defined in the same way as functions are in most programming
paradigms! A complete list of constraints can be found at the end of the manual. The
two following constraints very simply set bo=0 and b=d.

eq(bo, 0)
eq(b,d)

Note that except in special cases (the reify and reifyimply constraints), Min-
ion constraints cannot be nested. For example eq(eq(bo,0), d) is not valid. Such
constraints must be written by manually adding extra variables.

To get a single variable from a matrix, you index it with square brackets using
commas to separate the dimensions of the matrix. The first example following is a 1D
matrix, the second in 4D.

eq(q[1],0)
eq(bn[0,1,1,1], bm[1,1])

It’s easy to get a row or column from a matrix. You use _ in the indices you want
to vary. Giving a matrix without an index simply gives all the variables in that matrix.
The following shows how flattening occurs...
[bm] == [bm[_, _]] == [bm[0, 0], bm[0, 1], bm[1, 0], bm[1, 1]]
[bm[_, 1]] = [bm[0, 1], bm[1, 1]]
[bn[1, _, 0, _] = [bn[1, 0, 0, 0], b[1, 0, 0, 1], b[1, 1, 0, 0], b[1, 1, 0, 1]]

You can string together a list of such expressions as in the following example:

lexleq([bn[1,_,0,_], bo, q[0]] , [b, bm, d])

So the parser can recognise them you must always put [] around any matrix ex-
pression, so lexleq(bm, bm) is invalid, but the following is valid:

lexleq([bm], [bm])

An example of a constraint which uses tuples

table([q], Fred)

You do not have to pre-declare tuples, you can write them explicitly if you wish.
The above constraint for example is equivalent to:

table([q],{ <0,2,3>,<2,0,3>,<3,1,3> })

CHAPTER 3. MINION IN PRACTICE 20

The last section is the search section. This section is optional, and allows some
limited control over the way minion searches for a solution. Note that everything in
this section can be given at most once.

SEARCH

You give the variable ordering by listing each of the variables in the order you wish
them to be searched. You can either list each of the variables in a matrix individually
by giving the index of each variable, or you can just state the matrix in which case it
goes through each of the variables in turn. If you miss any of the variables out than
these variables are not branched on. Note that this can lead to Minion reporting invalid
solutions, so use with care! If you don’t give an explicit variable ordering, than one is
generated based on the order the variables are declared. If you give a -varorder on
the command line, that will only consider the variable given in the VARORDER.

VARORDER [bo,b,d,q[_]]

You give the value order for each variable as either a for ascending or d for de-
scending. The value orderings are given in the same order as the variable ordering. For
example, to make the variable b by searched in descending order you make the second
term into a d as the above variable ordering shows it to be the second variable to be
searched. The default variable order is ascending order for all variables.

VALORDER [a,a,d,a]

You can have one objective function which can be either to maximise or minimise
any single variable. To minimise a constraint, you should assign it equal to a new
variable.

MAXIMISING bo
MINIMISING x3

The print statement takes a 2D matrix of things to print. The following example
prints both the variables bo and q, putting these in double square brackets turns them
into a 2D matrix so they are acceptable input. You can also give: PRINT ALL (the de-
fault) which prints all variables and PRINT NONE which turns printing off completely.

PRINT [[bo, q]]

The file must end with the **EOF** marker! Any text under that is ignored, so you
can write whatever you like (or nothing at all...)

EOF

The only remaining part of Minion’s input language are its many constraints. These
are listed in the Appendix.

CHAPTER 3. MINION IN PRACTICE 21

3.2 The Farmers Problem
The Farmers Problem is a very simple problem which makes a very good example
to be the first CP that you model. The problem is as follows: A farmer has 7 ani-
mals on his farm: pigs and hens. They all together have 22 legs. How many pigs
(4 legs) and how many hens(2 legs) does the farmer have? These files can be found in
/summer_school/examples. The Essence’ file is named FarmersProblem.eprime
and the Minion file is FarmersProblem.minion

The Essence’ specification of this (which was explained in detail in the Tailor sec-
tion is as follows:

find pigs, hens: int(0..7)

such that

pigs + hens = 7,
pigs * 4 + hens * 2 = 22

The Minion input file for this is:

MINION 3

There are two variables pigs and hens both have domain 0..7

VARIABLES
DISCRETE pigs {0..7}
DISCRETE hens {0..7}

Both variables pigs and hens should be printed and the variable ordering is search
pigs than hens.

SEARCH

PRINT [[pigs],[hens]]

VARORDER [pigs,hens]

CONSTRAINTS

The following two constraints relate to the following (pigs×4)+(hens×2) = 22.
There is no weighted sum constraint in Minion so you should use the weighted sum less
than and equal to constraint and the weighted sum greater than and equal to constraint.
You read this as (hens× 2) + (pigs× 4)) ≤ 22 and (hens× 2) + (pigs× 4) ≥ 22.

weightedsumgeq([2,4], [hens,pigs], 22)
weightedsumleq([2,4], [hens,pigs], 22)

CHAPTER 3. MINION IN PRACTICE 22

The following two constraints relate to the following pigs+hens = 7. There is no
sum constraint in Minion so you should use the sum less than and equal to constraint
and the sum greater than and equal to constraint. You read this as hens + pigs ≤ 7
and hens+ pigs ≥ 7.

sumleq([hens,pigs], 7)
sumgeq([hens,pigs], 7)

EOF

3.3 Cryptarithmetic
The second problem outlined is a very famous Cryptarithmetic puzzle: SEND + MORE
= MONEY. These files can be found in /summer_school/examples the Essence’
file is SENDMOREMONEY.eprime and the Minion file is SENDMOREMONEY.minion.
The Essence’ specification is as follows:

find S,E,N,D,M,O,R,Y : int(0..9)

such that

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =
10000*M + 1000*O + 100*N + 10*E + Y,

alldiff([S,E,N,D,M,O,R,Y])

The Minion model is then:

MINION 3

There are 8 variables: S,E,N,D,M,O,R,Y all with domains 0 to 9.

VARIABLES
DISCRETE S {0..9}
DISCRETE E {0..9}
DISCRETE N {0..9}
DISCRETE D {0..9}
DISCRETE M {0..9}
DISCRETE O {0..9}
DISCRETE R {0..9}
DISCRETE Y {0..9}

Search the variables in the order S, E, N, D, M, O, R, Y and print the same variable
in this order.

SEARCH

CHAPTER 3. MINION IN PRACTICE 23

PRINT [[S],[E],[N],[D],[M],[O],[R],[Y]]

VARORDER [S,E,N,D,M,O,R,Y]

The first constraint is an all different which is across all variables this is an implicit
constraint in the problem, as all the letters represent different numbers.

CONSTRAINTS

alldiff([S, E, N, D, M, O, R, Y])

The second constraint represents:(1000×S)+(100×E)+(10×N)+D+(1000×
M)+(100×O)+(10×R)+E = (10000×M)+(1000×O)+(100×N)+(10×E)+Y .
The first thing the model does is rewrite this expression to make it equal to a number, in
this case 0. So this expression becomes: (10000×M)+(1000×O)+(100×N)+(10×
E)+Y −(1000×S)−(100×E)−(10×N)−D−(1000×M)−(100×O)−(10×R)−
E = 0. The terms are then rearranged so the same weights are together and the positive
numbers are first this then becomes: Y +(10×E)+(100×N)+(1000×O)+(10000×
M)−D−E−(10×N)−(10×R)−(100×E)−(100×O)−(1000×M)−(1000×S) =
0. Minion does not have a weighted sum equals constraint, so this is represented as one
weighted sum less than or equal to and one weighted sum greater than or equal to. The
two constraints are then: Y +(10×E)+ (100×N)+ (1000×O)+ (10000×M)−
D−E−(10×N)−(10×R)−(100×E)−(100×O)−(1000×M)−(1000×S) ≤ 0
and Y +(10×E)+ (100×N)+ (1000×O)+ (10000×M)−D−E− (10×N)−
(10×R)− (100× E)− (100×O)− (1000×M)− (1000× S) ≥ 0.

weightedsumgeq(
[1,10,100,1000,10000,-1,-1,-10,-10,-100,-100,-1000,-1000],
[Y,E,N,O,M,D,E,N,R,E,O,M,S], 0)
weightedsumleq(
[1,10,100,1000,10000,-1,-1,-10,-10,-100,-100,-1000,-1000],
[Y,E,N,O,M,D,E,N,R,E,O,M,S], 0)

EOF

3.4 The Eight Number Puzzle
The eight number puzzle asks you to label the nodes of the graph shown in Figure 3.1
with the values 1 to 8 such that no two connected nodes have consecutive values.
These files can be found in /summer_school/examples the Essence’ file is EightPuz-
zleDiagram.eprime and the Minion file is EightPuzzleDiagram.minion. The Essence’
specification is as follows:

find circles: matrix indexed by [int(1..8)] of int(1..8)

such that

CHAPTER 3. MINION IN PRACTICE 24

Figure 3.1: Graph which represents The Eight Number Puzzle

alldiff(circles),
| circles[1] - circles[2] | > 1,
| circles[1] - circles[3] | > 1,
| circles[1] - circles[4] | > 1,
| circles[2] - circles[3] | > 1,
| circles[3] - circles[4] | > 1,
| circles[2] - circles[5] | > 1,
| circles[2] - circles[6] | > 1,
| circles[3] - circles[5] | > 1,
| circles[3] - circles[6] | > 1,
| circles[3] - circles[7] | > 1,
| circles[4] - circles[6] | > 1,
| circles[4] - circles[7] | > 1,
| circles[5] - circles[6] | > 1,
| circles[6] - circles[7] | > 1,
| circles[5] - circles[8] | > 1,
| circles[6] - circles[8] | > 1,
| circles[7] - circles[8] | > 1

The Minion model is then:

MINION 3

There is a 1d matrix of size 8 with domain {1,..,8} to represent the 8 circles which
numbers can be allocated to. There are also 34 auxiliary variables, 2 to represent each
constraint.

CHAPTER 3. MINION IN PRACTICE 25

VARIABLES
DISCRETE circles[8] {1..8}

auxiliary variables
DISCRETE aux0 {-7..7}
DISCRETE aux1 {0..7}
DISCRETE aux2 {-7..7}
DISCRETE aux3 {0..7}
DISCRETE aux4 {-7..7}
DISCRETE aux5 {0..7}
DISCRETE aux6 {-7..7}
DISCRETE aux7 {0..7}
DISCRETE aux8 {-7..7}
DISCRETE aux9 {0..7}
DISCRETE aux10 {-7..7}
DISCRETE aux11 {0..7}
DISCRETE aux12 {-7..7}
DISCRETE aux13 {0..7}
DISCRETE aux14 {-7..7}
DISCRETE aux15 {0..7}
DISCRETE aux16 {-7..7}
DISCRETE aux17 {0..7}
DISCRETE aux18 {-7..7}
DISCRETE aux19 {0..7}
DISCRETE aux20 {-7..7}
DISCRETE aux21 {0..7}
DISCRETE aux22 {-7..7}
DISCRETE aux23 {0..7}
DISCRETE aux24 {-7..7}
DISCRETE aux25 {0..7}
DISCRETE aux26 {-7..7}
DISCRETE aux27 {0..7}
DISCRETE aux28 {-7..7}
DISCRETE aux29 {0..7}
DISCRETE aux30 {-7..7}
DISCRETE aux31 {0..7}
DISCRETE aux32 {-7..7}
DISCRETE aux33 {0..7}

The variable ordering branches on all the circle variables before each of the aux
variables. Only the circle variables are printed.

SEARCH

PRINT [circles]

CHAPTER 3. MINION IN PRACTICE 26

VARORDER [circles,
aux0,aux1,aux2,aux3,aux4,aux5,aux6,aux7,
aux8,aux9,aux10,aux11,aux12,aux13,aux14,aux15,
aux16,aux17,aux18,aux19,aux20,aux21,aux22,aux23,
aux24,aux25,aux26,aux27,aux28,aux29,aux30,aux31,
aux32,aux33]

The all different constraint on the circle variables are explicit in the problem,
this is the first constraint in the collection. The other constraints are all of the type
|circles[a] − circles[b]| > 1. The first of these such constraints is |circles[1] −
circles[2]| > 1 this type of constraint is represented by a series of 4 constraints in
Minion. The constraints are reversed in the Minion specification so that the last 4 con-
straints represent this first expression. The constraints are indexed from 1 in Essence’
and 1 in Minion, so the above constraint becomes |circles[0]− circles[1]| > 1. Then
|circles[0] − circles[1]| > 1 is decomposed to circles[1] − circles[2] = aux0 and
|aux0| = aux1 and 1 ≤ aux1 − 1. As Minion has no weighted sum equals to con-
straint a weighted sum greater than or equals to constraint and a weighted sum less than
or equals to, so circles[1]− circles[2] = aux0 is circles[1]− circles[2] ≤ aux0 and
circles[1]− circles[2] ≥ aux0. The other constraints all form the same pattern.

CONSTRAINTS

alldiff([circles])
weightedsumgeq([1,-1], [circles[6],circles[7]], aux32)
weightedsumleq([1,-1], [circles[6],circles[7]], aux32)
abs(aux33,aux32)
ineq(1,aux33,-1)
weightedsumgeq([1,-1], [circles[5],circles[7]], aux30)
weightedsumleq([1,-1], [circles[5],circles[7]], aux30)
abs(aux31,aux30)
ineq(1,aux31,-1)
weightedsumgeq([1,-1], [circles[4],circles[7]], aux28)
weightedsumleq([1,-1], [circles[4],circles[7]], aux28)
abs(aux29,aux28)
ineq(1,aux29,-1)
weightedsumgeq([1,-1], [circles[5],circles[6]], aux26)
weightedsumleq([1,-1], [circles[5],circles[6]], aux26)
abs(aux27,aux26)
ineq(1,aux27,-1)
weightedsumgeq([1,-1], [circles[4],circles[5]], aux24)
weightedsumleq([1,-1], [circles[4],circles[5]], aux24)
abs(aux25,aux24)
ineq(1,aux25,-1)
weightedsumgeq([1,-1], [circles[3],circles[6]], aux22)
weightedsumleq([1,-1], [circles[3],circles[6]], aux22)
abs(aux23,aux22)

CHAPTER 3. MINION IN PRACTICE 27

ineq(1,aux23,-1)
weightedsumgeq([1,-1], [circles[3],circles[5]], aux20)
weightedsumleq([1,-1], [circles[3],circles[5]], aux20)
abs(aux21,aux20)
ineq(1,aux21,-1)
weightedsumgeq([1,-1], [circles[2],circles[6]], aux18)
weightedsumleq([1,-1], [circles[2],circles[6]], aux18)
abs(aux19,aux18)
ineq(1,aux19,-1)
weightedsumgeq([1,-1], [circles[2],circles[5]], aux16)
weightedsumleq([1,-1], [circles[2],circles[5]], aux16)
abs(aux17,aux16)
ineq(1,aux17,-1)
weightedsumgeq([1,-1], [circles[2],circles[4]], aux14)
weightedsumleq([1,-1], [circles[2],circles[4]], aux14)
abs(aux15,aux14)
ineq(1,aux15,-1)
weightedsumgeq([1,-1], [circles[1],circles[5]], aux12)
weightedsumleq([1,-1], [circles[1],circles[5]], aux12)
abs(aux13,aux12)
ineq(1,aux13,-1)
weightedsumgeq([1,-1], [circles[1],circles[4]], aux10)
weightedsumleq([1,-1], [circles[1],circles[4]], aux10)
abs(aux11,aux10)
ineq(1,aux11,-1)
weightedsumgeq([1,-1], [circles[2],circles[3]], aux8)
weightedsumleq([1,-1], [circles[2],circles[3]], aux8)
abs(aux9,aux8)
ineq(1,aux9,-1)
weightedsumgeq([1,-1], [circles[1],circles[2]], aux6)
weightedsumleq([1,-1], [circles[1],circles[2]], aux6)
abs(aux7,aux6)
ineq(1,aux7,-1)
weightedsumgeq([1,-1], [circles[0],circles[3]], aux4)
weightedsumleq([1,-1], [circles[0],circles[3]], aux4)
abs(aux5,aux4)
ineq(1,aux5,-1)
weightedsumgeq([1,-1], [circles[0],circles[2]], aux2)
weightedsumleq([1,-1], [circles[0],circles[2]], aux2)
abs(aux3,aux2)
ineq(1,aux3,-1)
weightedsumgeq([1,-1], [circles[0],circles[1]], aux0)
weightedsumleq([1,-1], [circles[0],circles[1]], aux0)
abs(aux1,aux0)
ineq(1,aux1,-1)

CHAPTER 3. MINION IN PRACTICE 28

EOF

3.5 A K4 × P2 Graceful Graph
This problem is stated as follows. A labelling f of the nodes of a graph with q edges
is graceful if f assigns each node a unique label from 0, 1, ..., q and when each edge
xy is labelled with |f(x) − f(y)|, the edge labels are all different. (Hence, the edge
labels are a permutation of 1, 2, ..., q.) Does the K4 × P2 graph shown in Figure 3.2
have a graceful library. These files can be found in /summer_school/examples,
the Essence’ file is called K4P2GracefulGraph.eprime and the Minion file is
K4P2GracefulGraph.minion. The Essence’ specification is as follows:

Figure 3.2: A K4 × P2 Graph

find nodes : matrix indexed by [int(1..8)] of int(0..16),
edges: matrix indexed by [int(1..16)] of int(1..16)

such that

|nodes[1] - nodes[2]| = edges[1],
|nodes[1] - nodes[3]| = edges[2],
|nodes[1] - nodes[4]| = edges[3],
|nodes[2] - nodes[3]| = edges[4],
|nodes[2] - nodes[4]| = edges[5],
|nodes[3] - nodes[4]| = edges[6],

|nodes[5] - nodes[6]| = edges[7],

CHAPTER 3. MINION IN PRACTICE 29

|nodes[5] - nodes[7]| = edges[8],
|nodes[5] - nodes[8]| = edges[9],
|nodes[6] - nodes[7]| = edges[10],
|nodes[6] - nodes[8]| = edges[11],
|nodes[7] - nodes[8]| = edges[12],

|nodes[1] - nodes[5]| = edges[13],
|nodes[2] - nodes[6]| = edges[14],
|nodes[3] - nodes[7]| = edges[15],
|nodes[4] - nodes[8]| = edges[16],

alldiff(edges),
alldiff(nodes)

The Minion model is then:

MINION 3

There are two 1d arrays of variables one representing all the node variables and one
representing all the edge variables. The 8 node variables have domain 0 to 16 and the
edge variables have domain 1 to 16. There are also 16 auxiliary variables introduced
called aux0 to aux15 there is one of these for each constraint and there is one constraint
to represent each edge.

VARIABLES
DISCRETE nodes[8] {0..16}
DISCRETE edges[16] {1..16}

auxiliary variables
DISCRETE aux0 {-16..16}
DISCRETE aux1 {-16..16}
DISCRETE aux2 {-16..16}
DISCRETE aux3 {-16..16}
DISCRETE aux4 {-16..16}
DISCRETE aux5 {-16..16}
DISCRETE aux6 {-16..16}
DISCRETE aux7 {-16..16}
DISCRETE aux8 {-16..16}
DISCRETE aux9 {-16..16}
DISCRETE aux10 {-16..16}
DISCRETE aux11 {-16..16}
DISCRETE aux12 {-16..16}
DISCRETE aux13 {-16..16}
DISCRETE aux14 {-16..16}
DISCRETE aux15 {-16..16}

The variable order is to branch on the nodes then on the edges then the auxiliary
variables. Only the node and the edge variables are printed.

CHAPTER 3. MINION IN PRACTICE 30

SEARCH

PRINT [nodes,edges]

VARORDER [nodes,edges,
aux0,aux1,aux2,aux3,aux4,aux5,aux6,aux7,
aux8,aux9,aux10,aux11,aux12,aux13,aux14,aux15]

Implicit in the problem is an all different constraint on both the node and edge
variables. The other constraints are all of the form |nodes[a] - nodes[b]| = edges[a], the
first of these constraints from the Essence’ specification is |nodes[1] − nodes[2]| =
edges[1] this corresponds to the last three constraints in the minion file as the order
of constraints are reversed. Minion starts indexing matrices from 0, whereas Essence’
started numbering from 1 so the above constraint becomes |nodes[0] − nodes[1]| =
edges[0]. This is broken into nodes[0] − nodes[1] = aux0 and |edges[0]| = aux0.
As minion has no weighted sum equals this is broken into a weighted sum less than
or equals to and weighted sum greater than or equals to. So this full constraint is
represented as nodes[0] − nodes[1] ≤ aux0 and nodes[0] − nodes[1] ≥ aux0 and
|edges[0]| = aux0.

CONSTRAINTS

alldiff([nodes])
alldiff([edges])
weightedsumgeq([1,-1], [nodes[3],nodes[7]], aux15)
weightedsumleq([1,-1], [nodes[3],nodes[7]], aux15)
abs(edges[15],aux15)
weightedsumgeq([1,-1], [nodes[2],nodes[6]], aux14)
weightedsumleq([1,-1], [nodes[2],nodes[6]], aux14)
abs(edges[14],aux14)
weightedsumgeq([1,-1], [nodes[1],nodes[5]], aux13)
weightedsumleq([1,-1], [nodes[1],nodes[5]], aux13)
abs(edges[13],aux13)
weightedsumgeq([1,-1], [nodes[0],nodes[4]], aux12)
weightedsumleq([1,-1], [nodes[0],nodes[4]], aux12)
abs(edges[12],aux12)
weightedsumgeq([1,-1], [nodes[6],nodes[7]], aux11)
weightedsumleq([1,-1], [nodes[6],nodes[7]], aux11)
abs(edges[11],aux11)
weightedsumgeq([1,-1], [nodes[5],nodes[7]], aux10)
weightedsumleq([1,-1], [nodes[5],nodes[7]], aux10)
abs(edges[10],aux10)
weightedsumgeq([1,-1], [nodes[5],nodes[6]], aux9)
weightedsumleq([1,-1], [nodes[5],nodes[6]], aux9)
abs(edges[9],aux9)
weightedsumgeq([1,-1], [nodes[4],nodes[7]], aux8)

CHAPTER 3. MINION IN PRACTICE 31

weightedsumleq([1,-1], [nodes[4],nodes[7]], aux8)
abs(edges[8],aux8)
weightedsumgeq([1,-1], [nodes[4],nodes[6]], aux7)
weightedsumleq([1,-1], [nodes[4],nodes[6]], aux7)
abs(edges[7],aux7)
weightedsumgeq([1,-1], [nodes[4],nodes[5]], aux6)
weightedsumleq([1,-1], [nodes[4],nodes[5]], aux6)
abs(edges[6],aux6)
weightedsumgeq([1,-1], [nodes[2],nodes[3]], aux5)
weightedsumleq([1,-1], [nodes[2],nodes[3]], aux5)
abs(edges[5],aux5)
weightedsumgeq([1,-1], [nodes[1],nodes[3]], aux4)
weightedsumleq([1,-1], [nodes[1],nodes[3]], aux4)
abs(edges[4],aux4)
weightedsumgeq([1,-1], [nodes[1],nodes[2]], aux3)
weightedsumleq([1,-1], [nodes[1],nodes[2]], aux3)
abs(edges[3],aux3)
weightedsumgeq([1,-1], [nodes[0],nodes[3]], aux2)
weightedsumleq([1,-1], [nodes[0],nodes[3]], aux2)
abs(edges[2],aux2)
weightedsumgeq([1,-1], [nodes[0],nodes[2]], aux1)
weightedsumleq([1,-1], [nodes[0],nodes[2]], aux1)
abs(edges[1],aux1)
weightedsumgeq([1,-1], [nodes[0],nodes[1]], aux0)
weightedsumleq([1,-1], [nodes[0],nodes[1]], aux0)
abs(edges[0],aux0)

EOF

3.6 The Zebra Puzzle
The Zebra Puzzle is a very famous logic puzzle. There are many different versions, but
the version we will answer is as follows:

1. There are five houses.

2. The Englishman lives in the red house.

3. The Spaniard owns the dog.

4. Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.

7. The Old Gold smoker owns snails.

CHAPTER 3. MINION IN PRACTICE 32

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

11. The man who smokes Chesterfields lives in the house next to the man with the
fox.

12. Kools are smoked in the house next to the house where the horse is kept.

13. The Lucky Strike smoker drinks orange juice.

14. The Japanese smokes Parliaments.

15. The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra? In the interest of clarity, it must
be added that each of the five houses is painted a different colour, and their inhab-
itants are of different national extractions, own different pets, drink different bever-
ages and smoke different brands of American cigarettes. These files can be found in
/summer_school/examples the Essence’ file is zebra.eprime and the Minion file is ze-
bra.minion. The Essence’ specification is as follows:

language ESSENCE’ 1.b.a

$red = colour[1]
$green = colour[2]
$ivory = colour[3]
$yellow = colour[4]
$blue = colour[5]
$Englishman = nationality[1]
$Spaniard = nationality[2]
$Ukranian = nationality[3]
$Norwegian = nationality[4]
$Japanese = nationality[5]
$coffee = drink[1]
$tea = drink[2]
$milk = drink[3]
$orange juice = drink[4]
$Old Gold = smoke[1]
$Kools = smoke[2]
$Chesterfields = smoke[3]
$Lucky Strike = smoke[4]
$Parliaments = smoke[5]
$dog = pets[1]
$snails = pets[2]
$fox = pets[3]
$horse = pets[4]

CHAPTER 3. MINION IN PRACTICE 33

find colour: matrix indexed by [int(1..5)] of int(1..5),
nationality: matrix indexed by [int(1..5)] of int(1..5),
drink: matrix indexed by [int(1..5)] of int(1..5),
smoke: matrix indexed by [int(1..5)] of int(1..5),
pets: matrix indexed by [int(1..5)] of int(1..5)

such that

$constraints needed as this is a logical problem where
$the value allocated to each position of the matrix
$represents positon of house
alldiff(colour),
alldiff(nationality),
alldiff(drink),
alldiff(smoke),
alldiff(pets),

$There are five houses.
$No constraint covered by domain specification

$The Englishman lives in the red house
nationality[1] = colour[1],

$The Spaniard owns the dog.
nationality[2] = pets[1],

$Coffee is drunk in the green house.
drink[1] = colour[2],

$The Ukranian drinks tea.
nationality[3] = drink[2],

$The green house is immediately to the
$right of the ivory house.
colour[2] + 1 = colour[3],

$The Old Gold smoker owns snails.
smoke[1] = pets[2],

$Kools are smoked in the yellow house.
smoke[2] = colour[4],

$Milk is drunk in the middle house.
drink[3] = 3,

CHAPTER 3. MINION IN PRACTICE 34

$The Norwegian lives in the first house
nationality[4] = 1,

$The man who smokes Chesterfields lives in
$the house next to the man with the fox.
|smoke[3] - pets[3]| = 1,

$Kools are smoked in the house next
$ to the house where the horse is kept.
|smoke[2] - pets[4]| = 1,

$The Lucky Strike smoker drinks orange juice.
smoke[4] = drink[4],

$The Japanese smokes Parliaments.
nationality[5] = smoke[5],

$The Norwegian lives next to the blue house.
|nationality[4] - colour[5]| = 1

The Minion model is then:

MINION 3

There are matrices named colour, nationality, drink, smoke and pets to represent
each of the objects discussed in the puzzle. They have domain {1, . . . , 5} which repre-
sents where in the row of five houses this object is held. There are also three auxiliary
variables introduced which are necessary for the most difficult constraints, these all
have domains {−4, . . . , 4}.

VARIABLES
DISCRETE colour[5] {1..5}
DISCRETE nationality[5] {1..5}
DISCRETE drink[5] {1..5}
DISCRETE smoke[5] {1..5}
DISCRETE pets[5] {1..5}

auxiliary variables
DISCRETE aux0 {-4..4}
DISCRETE aux1 {-4..4}
DISCRETE aux2 {-4..4}

The variable order branches on each of the matrices in turn then on the auxiliary
variables. Only the matrices of variables are printed.

CHAPTER 3. MINION IN PRACTICE 35

SEARCH

PRINT [colour,nationality,drink,smoke,pets]

VARORDER [colour,nationality,drink,smoke,pets,aux0,aux1,aux2]

We will go through each constraint in turn. As usual the constraints in Minion are
in the reverse order of the Essence’ specification and the minion matrices are indexed
from 0 whereas

CONSTRAINTS

|nationality[4]−colour[5]| = 1 becomes by counting indices from zero: |nationality[3]−
colour[4]| = 1. This is then decomposed as nationality[3] − colour[4] ≥ aux2,
nationality[3]− colour[4] ≤ aux2 and |aux2| = 1.

weightedsumgeq([1,-1], [nationality[3],colour[4]], aux2)
weightedsumleq([1,-1], [nationality[3],colour[4]], aux2)
abs(1,aux2)

nationality[5] = smoke[5] becomes by counting indices from zero: nationality[4] =
smoke[4].

eq(nationality[4], smoke[4])

drink[4] = smoke[4] becomes by counting indices from zero: drink[3] = smoke[3].

eq(drink[3], smoke[3])

|smoke[2] − pets[4]| = 1 becomes by counting indices from zero: |smoke[1] −
pets[3]| = 1. This is then decomposed as smoke[1] − pets[3] ≤ aux1, smoke[1] −
pets[3] ≥ aux1 and |aux1| = 1.

weightedsumgeq([1,-1], [smoke[1],pets[3]], aux1)
weightedsumleq([1,-1], [smoke[1],pets[3]], aux1)
abs(1,aux1)

|smoke[3] − pets[3]| = 1 becomes by counting indices from zero: |smoke[2] −
pets[2]| = 1. This is then decomposed as smoke[2] − pets[2] ≤ aux0, smoke[2] −
pets[2] ≥ aux0 and |aux0| = 1.

weightedsumgeq([1,-1], [smoke[2],pets[2]], aux0)
weightedsumleq([1,-1], [smoke[2],pets[2]], aux0)
abs(1,aux0)

nationality[4] = 1 becomes by counting indices from zero: nationality[3] = 1.

eq(1, nationality[3])

drink[3] = 3 becomes by counting indices from zero: drink[2] = 3.

eq(3, drink[2])

CHAPTER 3. MINION IN PRACTICE 36

smoke[2] = colour[4] becomes by counting indices from zero: smoke[1] =
colour[3]

eq(colour[3], smoke[1])

smoke[1] = pets[2] becomes by counting indices from zero: smoke[0] = pets[1]

eq(pets[1], smoke[0])

colour[2]+1 = colour[3] becomes by counting indices from zero: colour[1]+1 =
colour[2]. This is decomposed as colour[1] + 1 ≤ colour[2] and colour[1] + 1 ≥
colour[2].

sumleq([1,colour[1]], colour[2])
sumgeq([1,colour[1]], colour[2])

nationality[3] = drink[2] becomes by counting indices from zero: nationality[2] =
drink[1]

eq(drink[1], nationality[2])

drink[1] = colour[2] becomes by counting indices from zero: drink[0] = colour[1]

eq(colour[1], drink[0])

nationality[2] = pets[1] becomes by counting indices from zero: nationality[1] =
pets[0]

eq(nationality[1], pets[0])

nationality[1] = colour[1] becomes by counting indices from zero: nationality[0] =
colour[0]

eq(colour[0], nationality[0])

There is an implicit all different in the problem which is placed over all the matrices
of variables.

alldiff([pets])
alldiff([smoke])
alldiff([drink])
alldiff([nationality])
alldiff([colour])

EOF

CHAPTER 3. MINION IN PRACTICE 37

3.7 N-Queens
N-Queens is perhaps the most famous problem in CP. It is often used to demonstrate
systems. It is stated as the problem of putting n chess queens on an n× n chessboard
such that none of them is able to capture any other using the standard chess queen’s
moves. The model we will discuss here is the column model, where there is one vari-
able of domain 1, .. n for each row, which is the easiest model to describe. We will
look at the version where n = 4 as this has a reasonably small number of constraints
to These files can be found in /summer_school/examples the Essence’ file is NQueen-
sColumn.eprime and the Minion file is NQueensColumn.minion. The Essence’ speci-
fication is as follows:

given n: int
find queens: matrix indexed by [int(1..n)] of int(1..n)

such that

forall i : int(1..n). forall j : int(i+1..n).
|queens[i] - queens[j]| != |i - j|,
alldiff(queens),

letting n be 4

The Minion model is then:

MINION 3

There are 4 variables, each of which represents a column of the chess board. This
instance is of a 4×4 chessboard so there are 4 variables stored in a matrix called queens
with domain {1, . . . , 4}. There are two auxiliary variables for each of the 6 diagonal
constraints, one with domain {−3, . . . , 3} and one with domain {0, . . . , 3}.

VARIABLES
DISCRETE queens[4] {1..4}

auxiliary variables
DISCRETE aux0 {-3..3}
DISCRETE aux1 {0..3}
DISCRETE aux2 {-3..3}
DISCRETE aux3 {0..3}
DISCRETE aux4 {-3..3}
DISCRETE aux5 {0..3}
DISCRETE aux6 {-3..3}
DISCRETE aux7 {0..3}
DISCRETE aux8 {-3..3}
DISCRETE aux9 {0..3}
DISCRETE aux10 {-3..3}
DISCRETE aux11 {0..3}

CHAPTER 3. MINION IN PRACTICE 38

The variable order branches on each of the matrix variables in turn then on the
auxiliary variables. Only the matrix of variables is printed.

SEARCH

PRINT [queens]

VARORDER [queens,
aux0,aux1,aux2,aux3,aux4,aux5,aux6,aux7,
aux8,aux9,aux10,aux11]

There is an all different constraint on the queens variables. This ensures that two
queens cannot be put in the same row. The other constraints stop two queens being
placed on a diagonal. These diagonal constraints are all of the form |queens[i] −
queens[j]| 6= |i−j|. This is decomposed into the following: queens[i]−queens[j] =
auxa, |auxa| = auxb and auxb 6= constant. As minion has no weighted sum equals
the constraint is broken into a weighted sum less than or equals to and weighted sum
greater than or equals to. So this full constraint queens[i] − queens[j] = auxa is
represented as queens[i]− queens[j] ≤ auxa and queens[i]− queens[j] ≥ auxa.

CONSTRAINTS

weightedsumgeq([1,-1], [queens[2],queens[3]], aux0)
weightedsumleq([1,-1], [queens[2],queens[3]], aux0)
abs(aux1,aux0)
weightedsumgeq([1,-1], [queens[1],queens[3]], aux2)
weightedsumleq([1,-1], [queens[1],queens[3]], aux2)
abs(aux3,aux2)
weightedsumgeq([1,-1], [queens[1],queens[2]], aux4)
weightedsumleq([1,-1], [queens[1],queens[2]], aux4)
abs(aux5,aux4)
diseq(2, aux3)
weightedsumgeq([1,-1], [queens[0],queens[3]], aux6)
weightedsumleq([1,-1], [queens[0],queens[3]], aux6)
abs(aux7,aux6)
weightedsumgeq([1,-1], [queens[0],queens[2]], aux8)
weightedsumleq([1,-1], [queens[0],queens[2]], aux8)
abs(aux9,aux8)
weightedsumgeq([1,-1], [queens[0],queens[1]], aux10)
weightedsumleq([1,-1], [queens[0],queens[1]], aux10)
abs(aux11,aux10)
diseq(3, aux7)
diseq(2, aux9)
diseq(1, aux1)
diseq(1, aux5)
diseq(1, aux11)
alldiff([queens])

CHAPTER 3. MINION IN PRACTICE 39

EOF

Appendix A

All the Minion programming
constructs

You are viewing documentation for minion. The same documentation is available from
a minion executable by typing minion help at the command line. We intend that
the command line help system be the main source of documentation for the system.

Each of the entries below concerns a different aspect of the system, and the entries
are arranged hierarchically. For example to view information about the set of available
constraints as a whole view “constraints” and to view specific information about the
alldiff constraint view “constraints alldiff”.

A good place to start would be viewing the “input example” entry which exhibits a
complete example of a minion input file.

Usage: minion [switches] [minion input file]

40

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 41

A.1 constraints
Description

Minion supports many constraints and these are regularly being
improved and added to. In some cases multiple implementations of the
same constraints are provided and we would appreciate additional
feedback on their relative merits in your problem.

Minion does not support nesting of constraints, however this can be
achieved by auxiliary variables and reification.

Variables can be replaced by constants. You can find out more on
expressions for variables, vectors, etc. in the section on variables.

References

help variables

A.2 constraints abs
Description

The constraint

abs(x,y)

makes sure that x=|y|, i.e. x is the absolute value of y.

Reference

help constraints abs

A.3 constraints alldiff
Description

Forces the input vector of variables to take distinct values.

Example

Suppose the input file had the following vector of variables defined:

DISCRETE myVec[9] {1..9}

To ensure that each variable takes a different value include the
following constraint:

alldiff(myVec)

Notes

Enforces the same level of consistency as a clique of not equals
constraints.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 42

References

See

help constraints gacalldiff

for the same constraint that enforces GAC.

A.4 constraints difference
Description

The constraint

difference(x,y,z)

ensures that z=|x-y| in any solution.

Notes

This constraint can be expressed in a much longer form, this form both avoids
requiring an extra variable, and also gets better propagation. It gets bounds
consistency.

A.5 constraints diseq
Description

Constrain two variables to take different values.

Notes

Achieves arc consistency.

Example

diseq(v0,v1)

Description

Constrain two variables to take different values.

Notes

Achieves arc consistency.

Example

diseq(v0,v1)

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 43

A.6 constraints div
Description

The constraint

div(x,y,z)

ensures that floor(x/y)=z.

For example:

10/3 = 3
(-10)/3 = -4
10/(-3) = -4
(-10)/(-3) = 3

div and mod satisfy together the condition that:

y*(x/y) + x % y = x

The constraint is always false when y = 0

References

help constraints modulo

A.7 constraints div_undefzero
Description

The constraint

div_undefzero(x,y,z)

is the same as div (it ensures that floor(x/y)=z)
except the constraint is always true when y = 0,
instead of false.

This constraint exists for certain special requirements.
In general, if you are unsure what constraint to use,
then what you want is a plain div constraint!

References

help constraints div

A.8 constraints element
Description

The constraint

element(vec, i, e)

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 44

specifies that, in any solution, vec[i] = e and i is in the range
[0 .. |vec|-1].

Notes

Warning: This constraint is not confluent. Depending on the order the
propagators are called in Minion, the number of search nodes may vary when
using element. To avoid this problem, use watchelement instead. More details
below.

The level of propagation enforced by this constraint is not named, however it
works as follows. For constraint vec[i]=e:

- After i is assigned, ensures that min(vec[i]) = min(e) and
max(vec[i]) = max(e).

- When e is assigned, removes idx from the domain of i whenever e is not an
element of the domain of vec[idx].

- When m[idx] is assigned, removes idx from i when m[idx] is not in the domain
of e.

This level of consistency is designed to avoid the propagator having to scan
through vec, except when e is assigned. It does a quantity of cheap propagation
and may work well in practise on certain problems.

Element is not confluent, which may cause the number of search nodes to vary
depending on the order in which constraints are listed in the input file, or
the order they are called in Minion. For example, the following input causes
Minion to search 41 nodes.

MINION 3

VARIABLES
DISCRETE x[5] {1..5}

CONSTRAINTS
element([x[0],x[1],x[2]], x[3], x[4])
alldiff([x])

EOF

However if the two constraints are swapped over, Minion explores 29 nodes.
As a rule of thumb, to get a lower node count, move element constraints
to the end of the list.

References

See the entry

constraints watchelement

for details of an identical constraint that enforces generalised arc
consistency.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 45

A.9 constraints element_one
Description

The constraint element one is identical to element, except that the
vector is indexed from 1 rather than from 0.

References

See

help constraints element

for details of the element constraint which is almost identical to this
one.

A.10 constraints eq
Description

Constrain two variables to take equal values.

Example

eq(x0,x1)

Notes

Achieves bounds consistency.

Reference

help constraints minuseq

Description

Constrain two variables to take equal values.

Example

eq(x0,x1)

Notes

Achieves bounds consistency.

Reference

help constraints minuseq

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 46

A.11 constraints gacalldiff
Description

Forces the input vector of variables to take distinct values.

Example

Suppose the input file had the following vector of variables defined:

DISCRETE myVec[9] {1..9}

To ensure that each variable takes a different value include the
following constraint:

gacalldiff(myVec)

Notes

This constraint enforces generalized arc consistency.

A.12 constraints gacschema
Description

An extensional constraint that enforces GAC. The constraint is
specified via a list of tuples.

The format, and usage of gacschema, is identical to the ’table’ constraint.
It is difficult to predict which out of ’table’ and ’gacschema’ will be faster
for any particular problem.

A.13 constraints gcc
Description

The Generalized Cardinality Constraint (GCC) constrains the number of each value
that a set of variables can take.

gcc([primary variables], [values of interest], [capacity variables])

For each value of interest, there must be a capacity variable, which specifies
the number of occurrences of the value in the primary variables.

This constraint only restricts the number of occurrences of the values in
the value list. There is no restriction on the occurrences of other values.
Therefore the semantics of gcc are identical to a set of occurrence
constraints:

occurrence([primary variables], val1, cap1)
occurrence([primary variables], val2, cap2)
...

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 47

Example
Suppose the input file had the following vectors of variables defined:

DISCRETE myVec[9] {1..9}
BOUND cap[9] {0..2}

The following constraint would restrict the occurrence of values 1..9 in myVec
to be at most 2 each initially, and finally equal to the values of the cap
vector.

gcc(myVec, [1,2,3,4,5,6,7,8,9], cap)

Notes
This constraint enforces a hybrid consistency. It reads the bounds of the
capacity variables, then enforces GAC over the primary variables only. Then the
bounds of the capacity variables are updated using flow algorithms similar to
those proposed by Quimper et al, Improved Algorithms for the Global Cardinality
Constraint (CP 2004).

This constraint provides stronger propagation to the capacity variables than the
gccweak constraint.

A.14 constraints gccweak
Description
The Generalized Cardinality Constraint (GCC) (weak variant) constrains the
number of each value that a set of variables can take.

gccweak([primary variables], [values of interest], [capacity variables])

For each value of interest, there must be a capacity variable, which specifies
the number of occurrences of the value in the primary variables.

This constraint only restricts the number of occurrences of the values in
the value list. There is no restriction on the occurrences of other values.
Therefore the semantics of gccweak are identical to a set of occurrence
constraints:

occurrence([primary variables], val1, cap1)
occurrence([primary variables], val2, cap2)
...

Example
Suppose the input file had the following vectors of variables defined:

DISCRETE myVec[9] {1..9}
BOUND cap[9] {0..2}

The following constraint would restrict the occurrence of values 1..9 in myVec
to be at most 2 each initially, and finally equal to the values of the cap
vector.

gccweak(myVec, [1,2,3,4,5,6,7,8,9], cap)

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 48

Notes

This constraint enforces a hybrid consistency. It reads the bounds of the
capacity variables, then enforces GAC over the primary variables only. Then the
bounds of the capacity variables are updated by counting values in the domains
of the primary variables.

The consistency over the capacity variables is weaker than the gcc constraint,
hence the name gccweak.

A.15 constraints haggisgac
Description

An extensional constraint that enforces GAC. This constraint make uses
of ’short tuples’, which allow some values to be marked as don’t care.
When this allows the set of tuples to be reduced in size, this leads to
performance gains.

The variables used in the constraint have to be BOOL or DISCRETE variables.
Other types are not supported.

Example

Consider the constraint ’min([x1,x2,x3],x4)’’ on Booleans variables
x1,x2,x3,x4.

Represented as a TUPLELIST for a table or gacschema constraint, this would
look like:

TUPLELIST
mycon 8 4
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Short tuples give us a way of shrinking this list. Short tuples consist
of pairs (x,y), where x is a varible position, and y is a value for that
variable. For example:

[(0,0),(3,0)]

Represents ’If the variable at index 0 is 0, and the variable at index
3 is 0, then the constraint is true’.

This allows us to represent our constraint as follows:

SHORTTUPLELIST
mycon 4
[(0,0),(3,0)]

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 49

[(1,0),(3,0)]
[(2,0),(3,0)]
[(0,1),(1,1),(2,1),(3,1)]

Note that some tuples are double-represented here. The first 3 short
tuples all allow the assignment ’0 0 0 0’. This is fine. The important
thing for efficency is to try to give a small list of short tuples.

We use this tuple by writing:

haggisgac([x1,x2,x3,x4], mycon)

and now the variables [x1,x2,x3,x4] will satisfy the constraint mycon.

A.16 constraints haggisgac-stable
Description

An extensional constraint that enforces GAC. haggisgac-stable
is a variant of haggisgac which uses less memory in some cases,
and can also be faster (or slower). The input is identical to
haggisgac.

A.17 constraints hamming
Description

The constraint

hamming(X,Y,c)

ensures that the hamming distance between X and Y is at least c. That is, that
the size of the set {i | X[i] != y[i]} is greater than or equal to c.

A.18 constraints ineq
Description

The constraint

ineq(x, y, k)

ensures that

x <= y + k

in any solution.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 50

Notes
Minion has no strict inequality (<) constraints. However x < y can be
achieved by

ineq(x, y, -1)

A.19 constraints lexleq
Description
The constraint

lexleq(vec0, vec1)

takes two vectors vec0 and vec1 of the same length and ensures that
vec0 is lexicographically less than or equal to vec1 in any solution.

Notes
This constraints achieves GAC.

References
See also

help constraints lexless

for a similar constraint with strict lexicographic inequality.

A.20 constraints lexleq[rv]
Description
The constraint

lexle[rv](vec0, vec1)

takes two vectors vec0 and vec1 of the same length and ensures that
vec0 is lexicographically less than or equal to vec1 in any solution.

Notes
This constraint achieves GAC even when some variables are repeated in
vec0 and vec1. However, the extra propagation this achieves is rarely
worth the extra work.

References
See also

help constraints lexleq[quick]

for a much faster logically identical constraint, with lower
propagation.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 51

A.21 constraints lexless
Description

The constraint

lexless(vec0, vec1)

takes two vectors vec0 and vec1 of the same length and ensures that
vec0 is lexicographically less than vec1 in any solution.

Notes

This constraint maintains GAC.

References

See also

help constraints lexleq

for a similar constraint with non-strict lexicographic inequality.

A.22 constraints lighttable
Description

An extensional constraint that enforces GAC. The constraint is
specified via a list of tuples. lighttable is a variant of the
table constraint that is stateless and potentially faster
for small constraints.

For full documentation, see the help for the table constraint.

A.23 constraints litsumgeq
Description

The constraint litsumgeq(vec1, vec2, c) ensures that there exists at least c
distinct indices i such that vec1[i] = vec2[i].

Notes

A SAT clause {x,y,z} can be created using:

litsumgeq([x,y,z],[1,1,1],1)

Note also that this constraint is more efficient for smaller values of c. For
large values consider using watchsumleq.

Reifiability

This constraint is not reifiable.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 52

References

See also

help constraints watchsumleq
help constraints watchsumgeq

A.24 constraints max
Description

The constraint

max(vec, x)

ensures that x is equal to the maximum value of any variable in vec.

References

See

help constraints min

for the opposite constraint.

A.25 constraints min
Description

The constraint

min(vec, x)

ensures that x is equal to the minimum value of any variable in vec.

References

See

help constraints max

for the opposite constraint.

A.26 constraints minuseq
Description

Constraint

minuseq(x,y)

ensures that x=-y.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 53

Reference

help constraints eq

Description

Constraint

minuseq(x,y)

ensures that x=-y.

Reference

help constraints eq

A.27 constraints modulo
Description

The constraint

modulo(x,y,z)

ensures that x%y=z i.e. z is the remainder of dividing x by y.
For negative values, we ensure that:

y(x/y) + x%y = x

To be fully concrete, here are some examples:

3 % 5 = 3
-3 % 5 = 2
3 % -5 = -2
-3 % -5 = -3

References

help constraints div

A.28 constraints mod_undefzero
Description

The constraint

mod_undefzero(x,y,z)

is the same as mod except the constraint is always
true when y = 0, instead of false.

This constraint exists for certain special requirements.
In general, if you are unsure what constraint to use,
then what you want is a plain mod constraint!

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 54

References

help constraints mod

A.29 constraints negativetable
Description

An extensional constraint that enforces GAC. The constraint is
specified via a list of disallowed tuples.

Notes

See entry

help input negativetable

for how to specify a table constraint in minion input. The only
difference for negativetable is that the specified tuples are
disallowed.

References

help input table
help input tuplelist

A.30 constraints occurrence
Description

The constraint

occurrence(vec, elem, count)

ensures that there are count occurrences of the value elem in the
vector vec.

Notes

elem must be a constant, not a variable.

References

help constraints occurrenceleq
help constraints occurrencegeq

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 55

A.31 constraints occurrencegeq
Description

The constraint

occurrencegeq(vec, elem, count)

ensures that there are AT LEAST count occurrences of the value elem in
the vector vec.

Notes

elem and count must be constants

References

help constraints occurrence
help constraints occurrenceleq

A.32 constraints occurrenceleq
Description

The constraint

occurrenceleq(vec, elem, count)

ensures that there are AT MOST count occurrences of the value elem in
the vector vec.

Notes

elem and count must be constants

References

help constraints occurrence
help constraints occurrencegeq

A.33 constraints pow
Description

The constraint

pow(x,y,z)

ensures that x^y=z.

Notes

This constraint is only available for positive domains x, y and z.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 56

A.34 constraints product
Description

The constraint

product(x,y,z)

ensures that z=xy in any solution.

Notes

This constraint can be used for (and, in fact, has a specialised
implementation for) achieving boolean AND, i.e. x & y=z can be modelled
as

product(x,y,z)

The general constraint achieves bounds generalised arc consistency for
positive numbers.

A.35 constraints reification
Description

Reification is provided in two forms: reify and reifyimply.

reify(constraint, r) where r is a 0/1 var

ensures that r is set to 1 if and only if constraint is satisfied. That is, if r
is 0 the constraint must NOT be satisfied; and if r is 1 it must be satisfied as
normal. Conversely, if the constraint is satisfied then r must be 1, and if not
then r must be 0.

reifyimply(constraint, r)

only checks that if r is set to 1 then constraint must be satisfied. If r is not
1, constraint may be either satisfied or unsatisfied. Furthermore r is never set
by propagation, only by search; that is, satisfaction of constraint does not
affect the value of r.

Notes

ALMOST ALL constraints are are reifiable. Individual constraint entries mention
if the constraint is NOT reifiable.

ALL constraints are reifyimplyable.

A.36 constraints reify
References

See
help constraints reification

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 57

A.37 constraints reifyimply
References

See
help constraints reification

A.38 constraints shortstr2
Description

Another type of table constraint.

Example

ShortSTR2 is an implementation of STR2 by Christophe Lecoutre, adapted for
short supports.

shortstr2([x,y,z], [[1,2,3], [1,3,2]])

Notes

This constraint enforces generalized arc consistency.

Example

ShortSTR2 is an implementation of STR2 by Christophe Lecoutre, adapted for
short supports.

shortstr2([x,y,z], [[1,2,3], [1,3,2]])

Notes

This constraint enforces generalized arc consistency.

A.39 constraints sumgeq
Description

The constraint

sumgeq(vec, c)

ensures that sum(vec) >= c.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 58

A.40 constraints sumleq
Description

The constraint

sumleq(vec, c)

ensures that sum(vec) <= c.

A.41 constraints table
References

help input tuplelist
help input table
help input haggisgac

References

help input haggisgac-stable

References

help input shorttuplelist
help input negativetable
help input haggisgac

Description

An extensional constraint that enforces GAC. The constraint is
specified via a list of tuples.

The variables used in the constraint have to be BOOL or DISCRETE variables.
Other types are not supported.

Example

To specify a constraint over 3 variables that allows assignments
(0,0,0), (1,0,0), (0,1,0) or (0,0,1) do the following.

1) Add a tuplelist to the **TUPLELIST** section, e.g.:

TUPLELIST
myext 4 3
0 0 0
1 0 0
0 1 0
0 0 1

N.B. the number 4 is the number of tuples in the constraint, the
number 3 is the -arity.

2) Add a table constraint to the **CONSTRAINTS** section, e.g.:

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 59

CONSTRAINTS
table(myvec, myext)

and now the variables of myvec will satisfy the constraint myext.

Example

The constraints extension can also be specified in the constraint
definition, e.g.:

table(myvec, {<0,0,0>,<1,0,0>,<0,1,0>,<0,0,1>})

References

help input tuplelist
help input gacschema
help input negativetable
help input haggisgac

A.42 constraints watched-and
Description

The constraint

watched-and({C1,...,Cn})

ensures that the constraints C1,...,Cn are all true.

Notes

pointless, bearing in mind that a CSP is simply a conjunction of constraints
already! However sometimes it may be necessary to use a conjunction as a child
of another constraint, for example in a reification:

reify(watched-and({...}),r)

References

See also

help constraints watched-or

A.43 constraints watched-or
Description

The constraint

watched-or({C1,...,Cn})

ensures that at least one of the constraints C1,...,Cn is true.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 60

References

See also

help constraints watched-and

A.44 constraints watchelement
Description

The constraint

watchelement(vec, i, e)

specifies that, in any solution, vec[i] = e and i is in the range
[0 .. |vec|-1].

Notes

Enforces generalised arc consistency.

References

See entry

help constraints element

for details of an identical constraint that enforces a lower level of
consistency.

A.45 constraints watchelement_one
Description

This constraint is identical to watchelement, except the vector
is indexed from 1 rather than from 0.

References

See entry

help constraints watchelement

for details of watchelement which watchelement_one is based on.

A.46 constraints watchelement_undefzero
Description

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 61

The constraint

watchelement_undefzero(vec, i, e)

specifies that, in any solution, either:
a) vec[i] = e and i is in the range [0 .. |vec|-1]
b) i is outside the index range of vec, and e = 0

Unlike watchelement (and element) which are false if i is outside
the index range of vec.

In general, use watchelement unless you have a special reason to
use this constraint!

Notes

Enforces generalised arc consistency.

References

See entry

help constraints watchelement

for details of the standard element constraint, which is false
when the array value is out of bounds.

A.47 constraints watchless
Description

The constraint watchless(x,y) ensures that x is less than y.

References

See also

help constraints ineq

A.48 constraints watchsumgeq
Description

The constraint watchsumgeq(vec, c) ensures that sum(vec) >= c.

Notes

For this constraint, small values of c are more efficient.

Equivalent to litsumgeq(vec, [1,...,1], c), but faster.

This constraint works on 0/1 variables only.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 62

Reifiability
This constraint is not reifiable.

References
See also

help constraints watchsumleq
help constraints litsumgeq

A.49 constraints watchsumleq
Description
The constraint watchsumleq(vec, c) ensures that sum(vec) <= c.

Notes
Equivalent to litsumgeq([vec1,...,vecn], [0,...,0], n-c) but faster.

This constraint works on binary variables only.

For this constraint, large values of c are more efficient.

References
See also

help constraints watchsumgeq
help constraints litsumgeq

A.50 constraints watchvecneq
Description
The constraint

watchvecneq(A, B)

ensures that A and B are not the same vector, i.e., there exists some index i
such that A[i] != B[i].

A.51 constraints weightedsumgeq
Description
The constraint

weightedsumgeq(constantVec, varVec, total)

ensures that constantVec.varVec >= total, where constantVec.varVec is
the scalar dot product of constantVec and varVec.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 63

References
help constraints weightedsumleq
help constraints sumleq
help constraints sumgeq

A.52 constraints weightedsumleq
Description
The constraint

weightedsumleq(constantVec, varVec, total)

ensures that constantVec.varVec <= total, where constantVec.varVec is
the scalar dot product of constantVec and varVec.

References
help constraints weightedsumgeq
help constraints sumleq
help constraints sumgeq

A.53 constraints w-inrange
Description
The constraint w-inrange(x, [a,b]) ensures that a <= x <= b.

References
See also

help constraints w-notinrange

A.54 constraints w-inset
Description
The constraint w-inset(x, [a1,...,an]) ensures that x belongs to the set
{a1,..,an}.

References
See also

help constraints w-notinset

A.55 constraints w-literal
Description
The constraint w-literal(x, a) ensures that x=a.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 64

References

See also

help constraints w-notliteral

A.56 constraints w-notinrange
Description

The constraint w-notinrange(x, [a,b]) ensures that x < a or b < x.

References

See also

help constraints w-inrange

A.57 constraints w-notinset
Description

The constraint w-notinset(x, [a1,...,an]) ensures that x does not belong to the
set {a1,..,an}.

References

See also

help constraints w-inset

A.58 constraints w-notliteral
Description

The constraint w-notliteral(x, a) ensures that x =/= a.

References

See also

help constraints w-literal

A.59 constraSysInts shortstr2
Description

Another type of table constraint.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 65

A.60 input
Description

Minion expects to be provided with the name of an input file as an
argument. This file contains a specification of the CSP to be solved
as well as settings that the search process should use. The format is

Minion3Input::= MINION 3
<InputSection>+

EOF

InputSection::= <VariablesSection>
| <SearchSection>
| <ConstraintsSection>
| <TuplelistSection>
| <ShortTuplelistSection>

i.e. ’MINION 3’ followed by any number of variable, search,
constraints and tuplelists sections (can repeat) followed by
’**EOF**’, the end of file marker.

All text from a ’#’ character to the end of the line is ignored.

See the associated help entries below for information on each section.

Notes

You can give an input file via standard input by specifying ’--’ as the file
name, this might help when minion is being used as a tool in a shell script or
for compressed input, e.g.,

gunzip -c myinput.minion.gz | minion

A.61 input constraints
Description

The constraints section consists of any number of constraint
declarations on separate lines.

ConstraintsSection::= **CONSTRAINTS**
<ConstraintDeclaration>*

Example

CONSTRAINTS
eq(bool,0)
alldiff(d)

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 66

References

See help entries for individual constraints under

help constraints

for details on constraint declarations.

A.62 input example
Example

Below is a complete minion input file with commentary, as an example.

MINION 3

While the variable section doesn’t have to come first, you can’t
really do anything until
You have one...

VARIABLES

There are 4 type of variables
BOOL bool # Boolean don’t need a domain
BOUND b {1..3} # Bound vars need a domain given as a range
DISCRETE d {1..3} # So do discrete vars

#Note: Names are case sensitive!

Internally, Bound variables are stored only as a lower and upper bound
Whereas discrete variables allow any sub-domain

SPARSEBOUND s {1,3,6,7} # Sparse bound variables take a sorted list of values

We can also declare matrices of variables!

DISCRETE q[3] {0..5} # This is a matrix with 3 variables: q[0],q[1] and q[2]
BOOL bm[2,2] # A 2d matrix, variables bm[0,0], bm[0,1], bm[1,0], bm[1,1]
BOOL bn[2,2,2,2] # You can have as many indices as you like!

#The search section is entirely optional

SEARCH

Note that everything in SEARCH is optional, and can only be given at
most once!

If you don’t give an explicit variable ordering, one is generated.
These can take matrices in interesting ways like constraints, see below.
VARORDER [bool,b,d]

If you don’t give a value ordering, ’ascending’ is used
#VALORDER [a,a,a,a]

You can have one objective function, or none at all.
MAXIMISING bool
MINIMISING x3

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 67

both (MAX/MIN)IMISING and (MAX/MIN)IMIZING are accepted...

Print statement takes a vector of things to print

PRINT [bool, q]

You can also give:
PRINT ALL (the default)
PRINT NONE

Declare constraints in this section!

CONSTRAINTS

Constraints are defined in exactly the same way as in MINION input
formats 1 & 2
eq(bool, 0)
eq(b,d)

To get a single variable from a matrix, just index it
eq(q[1],0)
eq(bn[0,1,1,1], bm[1,1])

It’s easy to get a row or column from a matrix. Just use _ in the
indices you want
to vary. Just giving a matrix gives all the variables in that matrix.

#The following shows how flattening occurs...

[bm] == [bm[_,_]] == [bm[0,0], bm[0,1], bm[1,0], bm[1,1]]
[bm[_,1]] = [bm[0,1], bm[1,1]]
[bn[1,_,0,_] = [bn[1,0,0,0], b[1,0,0,1], b[1,1,0,0], b[1,1,0,1]]

You can string together a list of such expressions!

lexleq([bn[1,_,0,_], bool, q[0]] , [b, bm, d])

One minor problem.. you must always put [] around any matrix expression, so
lexleq(bm, bm) is invalid

lexleq([bm], [bm]) # This is OK!

Can give tuplelists, which can have names!
The input is: <name> <num_of_tuples> <tuple_length> <numbers...>
The formatting can be about anything..

TUPLELIST

Fred 3 3
0 2 3
2 0 3
3 1 3

Bob 2 2 1 2 3 4

#No need to put everything in one section! All sections can be reopened..

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 68

VARIABLES

You can even have empty sections.. if you want

CONSTRAINTS

#Specify tables by their names..

table([q], Fred)

Can still list tuples explicitally in the constraint if you want at
the moment.
On the other hand, I might remove this altogether, as it’s worse than giving
Tuplelists

table([q],{ <0,2,3>,<2,0,3>,<3,1,3> })

#Must end with the **EOF** marker!

EOF

Any text down here is ignored, so you can write whatever you like (or
nothing at all...)

A.63 input search
Description

Inside the search section one can specify

- variable orderings,
- value orderings,
- optimisation function, and
- details of how to print out solutions.

SearchSection::= <VarValOrdering>*
<OptimisationFn>?
<PrintFormat>?

If no varval ordering is given then the variables are assigned in instantiation
order and the values tried in ascending order.

If a variable order is given as a command line argument it will override
anything specified in the input file.

Multiple variable orders can be given, each with an optional value ordering:

VarValOrdering::= <VarOrder>
<ValOrder>?

In each VarOrder an instantiation order is specified for a subset of
variables. Variables can optionally be \"auxiliary variables\" (add \"AUX\" to
the varorder) meaning that if there are several solutions to the problem
differing only in the auxiliary variables, only one is reported by minion.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 69

VarOrder::= VARORDER AUX? <ORDER>? [<varname>+]

where

<ORDER>::= STATIC | SDF | SRF | LDF | ORIGINAL | WDEG | CONFLICT | DOMMinionThreeInputReader.hppOVERWDEG

The value ordering allows the user to specify an instantiation order
for the variables involved in the variable order, either ascending (a)
or descending (d) for each. When no value ordering is specified, the
default is to use ascending order for every search variable.

ValOrder::= VALORDER[(a|d)+]

To model an optimisation problem the user can specify to minimise
or maximise a variable’s value.

OptimisationFn::= MAXIMISING <varname>
| MINIMISING <varname>

Finally, the user can control some aspects of the way solutions are
printed. By default (no PrintFormat specified) all the variables are
printed in declaration order. Alternatively a custom vector, or ALL
variables, or no (NONE) variables can be printed. If a matrix or, more
generally, a tensor is given instead of a vector, it is automatically
flattened into a vector as described in ’help variables vectors’.

PrintFormat::= PRINT <vector>
| PRINT ALL
| PRINT NONE

References

See also

switches -varorder

A.64 input shorttuplelist
Description

A shorttuplelist section lists of allowed tuples for haggisgac
and other constraints which accept short tuple lists.

The required format is

TuplelistSection::= **TUPLELIST**
<Tuplelist>*

Tuplelist::= <name> <num_tuples> <short_tuple>+

short_tuple ::= [<literal>*,]

literal ::= (<num>, <num>)

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 70

Example

SHORTTUPLELIST
mycon 4
[(0,0),(3,0)]
[(1,0),(3,0)]
[(2,0),(3,0)]
[(0,1),(1,1),(2,1),(3,1)]

Represents the same constraint as:

TUPLELIST
mycon 8 4
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Short tuples give us a way of shrinking this list. Short tuples consist
of pairs (x,y), where x is a varible position, and y is a value for that
variable. For example:

[(0,0),(3,0)]

Represents ’If the variable at index 0 is 0, and the variable at index
3 is 0, then the constraint is true’.

Note that some tuples are double-represented in the example ’mycon’.
The first 3 short tuples all allow the assignment ’0 0 0 0’. This is fine.
The important thing for efficency is to try to give a small list of
short tuples.

References

help constraints haggisgac
help constraints haggisgac-stable
help input tuplelist

A.65 input tuplelist
Description

A tuplelist section lists of allowed tuples for table constraints
can be specified. This technique is preferable to specifying the
tuples in the constraint declaration, since the tuplelists can be
shared between constraints and named for readability.

The required format is

TuplelistSection::= **TUPLELIST**
<Tuplelist>*

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 71

Tuplelist::= <name> <num_tuples> <tuple_length> <numbers>+

Example
TUPLELIST
AtMostOne 4 3
0 0 0
0 0 1
0 1 0
1 0 0

References
help constraints table
help input shorttuplelist

A.66 input variables
Description
The variables section consists of any number of variable declarations
on separate lines.

VariablesSection::= **VARIABLES**
<VarDeclaration>*

Example
VARIABLES

BOOL bool #boolean var
BOUND b {1..3} #bounds var
SPARSEBOUND myvar {1,3,4,6,7,9,11} #sparse bounds var
DISCRETE d[3] {1..3} #array of discrete vars

References
See the help section

help variables

for detailed information on variable declarations.

A.67 switches
Description
Minion supports a number of switches to augment default behaviour. To
see more information on any switch, use the help system. The list
below contains all available switches. For example to see help on
-quiet type something similar to

minion help switches -quiet

replacing ’minion’ by the name of the executable you’re using.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 72

A.68 switches -check
Description

Check solutions for correctness before printing them out.

Notes

This option is the default for DEBUG executables.

A.69 switches -cpulimit
Description

To stop search after N seconds (CPU time), do

minion -cpulimit N myinput.minion

References

help switches -timelimit
help switches -nodelimit
help switches -searchlimit
help switches -sollimit

A.70 switches -dumptree
Description

Print out the branching decisions and variable states at each node.

A.71 switches -findallsols
Description

Find all solutions and count them. This option is ignored if the
problem contains any minimising or maximising objective.

A.72 switches -fullprop
Description

Disable incremental propagation.

Notes

This should always slow down search while producing exactly the same
search tree.

Only available in a DEBUG executable.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 73

A.73 switches -makeresume
Description

Write a resume file on timeout or being killed.

A.74 switches -nocheck
Description

Do not check solutions for correctness before printing them out.

Notes

This option is the default on non-DEBUG executables.

A.75 switches -nodelimit
Description

To stop search after N nodes, do

minion -nodelimit N myinput.minion

References

help switches -cpulimit
help switches -timelimit
help switches -searchlimit
help switches -sollimit

A.76 switches -noprintsols
Description

Do not print solutions.

A.77 switches -noresume
Description

Do not write a resume file on timeout or being killed. (default)

A.78 switches -outputCompressed
Description

Output a Minion instance with some basic reasoning performed to
reduce the size of the file. This file should produce identical
output the original instance but may solve faster.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 74

Example
To compress a file ’infile.minion’ to a file ’smaller.minion’

minion infile.minion -outputCompressed smaller.minion

A.79 switches -preprocess

This switch allows the user to choose what level of preprocess is
applied to their model before search commences.

The choices are:

- GAC
- generalised arc consistency (default)
- all propagators are run to a fixed point
- if some propagators enforce less than GAC then the model will
not necessarily be fully GAC at the outset

- SACBounds
- singleton arc consistency on the bounds of each variable
- AC can be achieved when any variable lower or upper bound is a
singleton in its own domain

- SAC
- singleton arc consistency
- AC can be achieved in the model if any value is a singleton in
its own domain

- SSACBounds
- singleton singleton bounds arc consistency
- SAC can be achieved in the model when domains are replaced by either
the singleton containing their upper bound, or the singleton containing
their lower bound

- SSAC
- singleton singleton arc consistency
- SAC can be achieved when any value is a singleton in its own domain

These are listed in order of roughly how long they take to
achieve. Preprocessing is a one off cost at the start of search. The
success of higher levels of preprocessing is problem specific; SAC
preprocesses may take a long time to complete, but may reduce search
time enough to justify the cost.

Example
To enforce SAC before search:

minion -preprocess SAC myinputfile.minion

References
help switches -X-prop-node

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 75

A.80 switches -printonlyoptimal
Description
In optimisation problems, only print the optimal value, and
not intermediate values.

A.81 switches -printsols
Description
Print solutions.

A.82 switches -printsolsonly
Description
Print only solutions and a summary at the end.

A.83 switches -quiet
Description
Do not print parser progress.

References
help switches -verbose

A.84 switches -randomiseorder
Description
Randomises the ordering of the decision variables. If the input file
specifies as ordering it will randomly permute this. If no ordering is
specified a random permutation of all the variables is used.

A.85 switches -randomseed
Description
Set the pseudorandom seed to N. This allows ’random’ behaviour to be
repeated in different runs of minion.

A.86 switches -redump
Description
Print the minion input instance file to standard out. No search is
carried out when this switch is used.

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 76

A.87 switches -searchlimit
Description

To stop search after N seconds search time (real time), do

minion -searchlimit N myinput.minion

This does not include any time spent in preprocessing.

References

help switches -timelimit
help switches -cpulimit
help switches -nodelimit
help switches -sollimit

A.88 switches -sollimit
Description

To stop search after N solutions have been found, do

minion -sollimit N myinput.minion

References

help switches -cpulimit
help switches -nodelimit
help switches -searchlimit
help switches -timelimit

A.89 switches -solsout
Description

Append all solutionsto a named file.
Each solution is placed on a line, with no extra formatting.

Example

To add the solutions of myproblem.minion to mysols.txt do

minion -solsout mysols.txt myproblem.minion

A.90 switches -split
Description

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 77

When Minion is terminated before the end of search, write out two new input
files that split the remaining search space in half. Each of the files will have
all the variables and constraints of the original file plus constraints that
rule out the search already done. In addition, the domain of the variable under
consideration when Minion was stopped is split in half with each of the new
input files considering a different half.

This feature is experimental and intended to facilitate parallelisation -- to
parallelise the solving of a single constraint problem, stop and split
repeatedly. Please note that large-scale testing of this feature was limited to
Linux systems and it might not work on others (especially Windows).

The name of the new input files is composed of the name of the original
instance, the string ’resume’, a timestamp, the process ID of Minion, the name
of the variable whose domain is being split and 0 or 1. Each of the new input
files has a comment identifying the name of the input file which it was split
from. Similarly, Minion’s output identifies the new input files it writes when
splitting.

The new input files can be run without any special flags.

This flag is intended to be used with the -timelimit, -sollimit, -nodelimit
,-searchlimit or -cpulimit flags. Please note that changing other flags between
runs (such as -varorder) may have unintended consequences.

Implies -makeresume.

A.91 switches -tableout
Description
Append a line of data about the current run of minion to a named file.
This data includes minion version information, arguments to the
executable, build and solve time statistics, etc. See the file itself
for a precise schema of the supplied information.

Example
To add statistics about solving myproblem.minion to mystats.txt do

minion -tableout mystats.txt myproblem.minion

A.92 switches -timelimit
Description
To stop search after N seconds (real time), do

minion -timelimit N myinput.minion

References
help switches -cpulimit
help switches -nodelimit
help switches -searchlimit
help switches -sollimit

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 78

A.93 switches -varorder
Description

Enable a particular variable ordering for the search process. This
flag is experimental and minion’s default ordering might be faster.

The available orders are:

- sdf - smallest domain first, break ties lexicographically

- sdf-random - sdf, but break ties randomly

- srf - smallest ratio first, chooses unassigned variable with smallest
percentage of its initial values remaining, break ties lexicographically

- srf-random - srf, but break ties randomly

- ldf - largest domain first, break ties lexicographically

- ldf-random - ldf, but break ties randomly

- random - random variable ordering

- static - lexicographical ordering

A.94 switches -verbose
Description

Print parser progress.

References

help switches -quiet

A.95 switches -X-prop-node
Description

Allows the user to choose the level of consistency to be enforced
during search.

See entry ’help switches -preprocess’ for details of the available
levels of consistency.

Example

To enforce SSAC during search:

minion -X-prop-node SSAC input.minion

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 79

References

help switches -preprocess

A.96 variables
General

Minion supports 4 different variable types, namely

- 0/1 variables,
- bounds variables,
- sparse bounds variables, and
- discrete variables.

Sub-dividing the variable types in this manner affords the greatest
opportunity for optimisation. In general, we recommend thinking of the
variable types as a hierarchy, where 1 (0/1 variables) is the most
efficient type, and 4 (Discrete variables) is the least. The
user should use the variable which is the highest in the hierarchy,
yet encompasses enough information to provide a full model for the
problem they are attempting to solve.

Minion also supports use of constants in place of variables, and constant
vectors in place of vectors of variables. Using constants will be at least
as efficient as using variables when the variable has a singleton domain.

See the entry on vectors for information on how vectors, matrices and,
more generally, tensors are handled in minion input. See also the
alias entry for information on how to multiply name variables for
convenience.

A.97 variables 01
Description

01 variables are used very commonly for logical expressions, and for
encoding the characteristic functions of sets and relations. Note that
wherever a 01 variable can appear, the negation of that variable can
also appear. A boolean variable x’s negation is identified by !x.

Example

Declaration of a 01 variable called bool in input file:

BOOL bool

Use of this variable in a constraint:

eq(bool, 0) #variable bool equals 0

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 80

A.98 variables alias
Description

Specifying an alias is a way to give a variable another name. Aliases
appear in the **VARIABLES** section of an input file. It is best
described using some examples:

ALIAS c = a

ALIAS c[2,2] = [[myvar,b[2]],[b[1],anothervar]]

A.99 variables bounds
Description

Bounds variables, where only the upper and lower bounds of the domain
are maintained. These domains must be continuous ranges of integers
i.e. holes cannot be put in the domains of the variables.

Example

Declaration of a bound variable called myvar with domain between 1
and 7 in input file:

BOUND myvar {1..7}

Use of this variable in a constraint:

eq(myvar, 4) #variable myvar equals 4

A.100 variables constants
Description

Minion supports the use of constants anywhere where a variable can be used. For
example, in a constraint as a replacement for a single variable, or a vector of
constants as a replacement for a vector of variables.

Examples

Use of a constant:

eq(x,1)

Use of a constant vector:

element([10,9,8,7,6,5,4,3,2,1],idx,e)

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 81

A.101 variables discrete
Description

In discrete variables, the domain ranges between the specified lower and upper
bounds, but during search any domain value may be pruned, i.e., propagation and
search may punch arbitrary holes in the domain.

Example

Declaration of a discrete variable x with domain {1,2,3,4} in input file:

DISCRETE x {1..4}

Use of this variable in a constraint:

eq(x, 2) #variable x equals 2

A.102 variables sparsebounds
Description

In sparse bounds variables the domain is composed of discrete values
(e.g. {1, 5, 36, 92}), but only the upper and lower bounds of the
domain may be updated during search. Although the domain of these
variables is not a continuous range, any holes in the domains must be
there at time of specification, as they can not be added during the
solving process.

Notes

Declaration of a sparse bounds variable called myvar containing values
{1,3,4,6,7,9,11} in input file:

SPARSEBOUND myvar {1,3,4,6,7,9,11}

Use of this variable in a constraint:
eq(myvar, 3) #myvar equals 3

A.103 variables vectors
Description

Vectors, matrices and tensors can be declared in minion
input. Matrices and tensors are for convenience, as constraints do not
take these as input; they must first undergo a flattening process to
convert them to a vector before use. Additional commas at the end of
vectors are ignored (see example below).

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 82

Examples
A vector of 0/1 variables:

BOOL myvec[5]

A matrix of discrete variables:

DISCRETE sudoku[9,9] {1..9}

A 3D tensor of 0/1s:

BOOL mycube[3,3,2]

One can create a vector from scalars and elements of vectors, etc.:

alldiff([x,y,myvec[1],mymatrix[3,4]])

When a matrix or tensor is constrained, it is treated as a vector
whose entries have been strung out into a vector in index order with
the rightmost index changing most quickly, e.g.

alldiff(sudoku)

is equivalent to

alldiff([sudoku[0,0],...,sudoku[0,8],...,sudoku[8,0],...,sudoku[8,8]])

Furthermore, with indices filled selectively and the remainder filled
with underscores (_) the flattening applies only to the underscore
indices:

alldiff(sudoku[4,_])

is equivalent to

alldiff([sudoku[4,0],...,sudoku[4,8]])

Lastly, one can optionally add square brackets ([]) around an
expression to be flattened to make it look more like a vector:

alldiff([sudoku[4,_]])

is equivalent to

alldiff(sudoku[4,_])

Example
Additional hanging commas at the end of array are ignored, e.g.

lexleq([A,B,C,],[D,E,F,])

is equivalent to

lexleq([A,B,C],[D,E,F])

This feature is provided to make it easier to computer-generate input

APPENDIX A. ALL THE MINION PROGRAMMING CONSTRUCTS 83

files.

Bibliography

[1] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[2] Christian Bessière and Jean-Charles Régin. Arc consistency for general constraint
networks: preliminary results. In Proceedings 15th International Joint Confer-
ence on Artificial Intelligence (IJCAI 97), pages 398–404, 1997.

[3] Alan M. Frisch, Christopher Jefferson, and Ian Miguel. Symmetry-breaking as
a prelude to implied constraints: A constraint modelling pattern. In Proceedings
16th European Conference on Artificial Intelligence (ECAI 2004), 2004.

[4] Warwick Harvey. Symmetry breaking and the social golfer problem. In Pro-
ceedings SymCon-01: Symmetry in Constraints, co-located with CP 2001, pages
9–16, 2001.

[5] Brahim Hnich, Ian Miguel, Ian P. Gent, and Toby Walsh. CSPLib: a problem
library for constraints. http://csplib.org/.

[6] Ludwig Krippahl and Pedro Barahona. Chemera: Constraints in protein structural
problems. In Proceedings of WCB06 Workshop on Constraint Based Methods for
Bioinformatics, pages 30–45, 2006.

[7] Paul Martin and David B. Shmoys. A new approach to computing optimal sched-
ules for the job-shop scheduling problem. In Proceedings 5th International Con-
ference on Integer Programming and Combinatorial Optimization (IPCO 96),
pages 389–403, 1996.

[8] Les Proll and Barbara Smith. ILP and constraint programming approaches to a
template design problem. INFORMS Journal of Computing, 10:265–275, 1998.

[9] Barbara Smith, Kostas Stergiou, and Toby Walsh. Modelling the Golomb Ruler
problem. In Proceedings of Workshop on Non Binary Constraints (at IJCAI 99),
1999.

[10] Barbara M. Smith. A dual graph translation of a problem in ‘Life’. In Proceed-
ings 8th International Conference on the Principles and Practice of Constraint
Programming (CP 2002), pages 402–414, 2002.

84

BIBLIOGRAPHY 85

[11] Mark Wallace. Practical applications of constraint programming. Constraints,
1(1/2):139–168, 1996.

